

In-Memory Malware

Analysis
PV204 Laboratory of security and applied

cryptography II

Course handouts and notes. // Václav Lorenc

In-Memory Malware Analysis

  

In-Memory Malware

Analysis
PV204 Laboratory of security and applied cryptography

II

Before we start…
A short introduction, how a common attack (let’s assume we are

talking about targeted attacks) is usually performed:

1. Reconnaissance

2. Weaponization

3. Delivery

4. Exploitation

5. C2

6. Exfiltration

Malware phases/stages:

1. System Infection / Exploit

2. Dropper / Downloader (multi-stated)

3. Callbacks

4. Configuration / Updates

5. Removal

How to use in-memory analysis?

1. Run malware / acquire memory.

2. Analyze memory, have fun.

3. ???

4. Profit!

How to setup

your lab

system?
  

 Oracle VirtualBox (or

another virtualization

technology capable of

making snapshots and

memory dumps).

 Windows XP/7/8

license or trial

 Memory dumping tool

 Adobe Reader and any

other vulnerable

software you consider

as important.

 (if possible, disable swap)

 Debuggers

 Disassembles

 Text editors

In-Memory Malware Analysis

  

Reverse Engineering for Beginners (x86)

Registers

8bit 16bit 32bit 64bit

AL AX EAX RAX

BL BX EBX RBX

CL CX ECX RCX
DL DX EDX RDX

 SI ESI RSI

 DI EDI RDI

 BP EBP RBP

 SP ESP RSP

And of course, instructions pointer (IP/EIP/RIP) and flags (flags/rflags), segment registers (CS, SS,

DS, ES, GS, FS), FPU registers, SSE, SSE2, …

BTW: BX register can be used for loops (like many other registers), but LOOP instruction works with (E)CX.

Instructions “families”

Evergreen The past The future

push aaa crc32

mov xlat aesenc

call verr pcmpistrm

retn smsw vfmsubadd132ps

jmp lsl movbe

Function Entry/Exit

push ebp

mov ebp, esp

sub esp, X

mov esp, ebp

pop ebp

ret X ; sizeof(x) + sizeof(y) + sizeof(z)

More Information

Very nice PDF published by Dennis Yurichev with introduction into Reverse Engineering, assembly

and some more advanced topics: http://yurichev.com/non-wiki-files/RE_for_beginners-en.pdf

http://yurichev.com/non-wiki-files/RE_for_beginners-en.pdf

In-Memory Malware Analysis

  

Other interesting/necessary topics
Memory addressing

 Segmentation/Paging/Virtualization

 Process vs. Kernel space and addresses; DLL/process injection

Executable formats
 Legacy DOS formats (DOS, EXE)

 Portable Executable (PE), symbol imports, DLL loading

Non-documented instructions/behavior
 Intel vs. AMD; Virtual Machines

Calling conventions
 cdecl

 stdcall (most common on Windows)

 fastcall

Anti-debugging tricks
 Exceptions, interrupts, time checking, debuggers detection, PE header manipulation, PEB

manipulation…

Anti-VM tricks
 looking for uncommon sequences and/or behavior (CPUID instruction, e.g.); BIOS analysis

 Windows registry keys presence

Code obfuscation/packing
 Virtualization (own instruction interpreters)

 UPX/ASPack – the most famous packers

 Usually combined with the previous techniques

Getting current IP (instructions pointer)
 near/far calls or jumps, useful for shellcodes

Win32 API Calls
 API hash strings, trampolines, … (to prevent detection)

Crypto Algorithms
 xor, aes, rc4, rsa

Data Execution Prevention & others
 DEP (Data Execution Prevention)

 ASLR (Address Space Layout Randomization)

 The previous techniques can (of course) be bypassed: ROP (Return Oriented Programming)

In-Memory Malware Analysis

  

Images
All the images were taken from Corkami Project webpage (https://code.google.com/p/corkami/).

Index of images:

 COM file, DOS executable walkthrough

 PE, Portable Executable walkthrough

https://code.google.com/p/corkami/

In-Memory Malware Analysis

  

In-Memory Malware Analysis

  

In-Memory Analysis
Even though doing an advanced reverse engineering could be life

changing experience, analyzing malware in this depth usually needs

some good clarification. In many security teams, one of the first steps

in incident classification is a triage.

For that reason, in-memory analysis of a running malware might be

beneficial.

However, there are many other good reasons why a security engineer

should do in-memory analysis first. You should use it when…

 Doing a rapid threat assessment – very efficient method.

 Infected host is online and available for the analysis, not restarted

yet.

 There is a chance that the original binary is gone (transient

infections).

 There was no original binary stored on the infected host.

 You cannot read JavaScript/Java or any other exploited

application’s code and vulnerability triggered.

 Messing with packers and obfuscated code can be annoying.

Indeed.

 Even though you can pass many defenses put in place by

attackers, after many hours you can find one that cannot be

broken because of missing DLL/configuration file.

 Some data are being exfiltrated memory can contain important

evidence – attackers steps, passwords, tools used, …

 …

Recommended

Tools
  

There are some publicly

available tools that can be

used for memory

analysis. They differ in

capabilities, supported

systems and licensing.

1. Volatility Framework

2. HBGary Responder

3. Mandiant Redline

4. F-Response

5. …

6. grep/strings :)

My preferred tools are

Volatility and HBGary

Responder (Pro Edition).

The first one is great for

its broad scope of system

that can be analyzed, the

second for graphical

debugger.

In-Memory Malware Analysis

  

Memory Acquisition Tools and Techniques (Windows OS)

1. Virtual machine memory dump

 Not applicable for many hosts (laptops, servers).

 Super useful for malware analysis when the malware doesn’t do any anti-VM tricks.

 Don’t forget to configure as little memory as possible for the running system; it will

significantly speed up your analysis.

 VirtualBox, VMWare can do this, VMWare more convenient.

2. FastDump (Pro)

 HBGary solution, small footprint, one of the best tools available.

 Cannot be obtained easily, official pages don’t work well; Pro version is expensive.

 Can acquire memory that is currently swapped-out!

 This can be critical for non-VM systems!

3. Memoryze

 Free tool by Mandiant.

 Quite big footprint, XML files, installer.

4. Win32dd.exe

 Not available anymore, replaced by MoonSols Windows Memory Toolkit.

5. MoonSols Windows Memory Toolkit

 Community Edition available.

 Single binary, small footprint.

6. Forensic tools (EnCase, Mandiant, Access Data, …)

 Remote acquisitions (over the network), compressed images, using already-installed drivers,

thus no tampering with the system memory.

 Corporate tools -- inhuman expensive ;)

In-Memory Malware Analysis

  

Memory Analysis Tools

Mandiant Redline
 http://www.mandiant.com/resources/download/redline

 For free, available for Windows XP, Vista and 7 (32-bit and 64-bit).

 Malware risk scoring index.

 Helps to assess system quickly.

 List with system and well-known good apps, suspicious mutexes, etc.

HBGary Responder (CE/Pro)
 http://www.hbgary.com/hbgary-releases-responder-ce

 Community Edition is available against registration.

 Available for Windows XP, Vista and 7.

 Nothing really awesome unless you use Pro Edition.

 Simple disassembler with graphing features, priceless.

 Digital DNA – very good process/memory scoring system.

 Can be extended by C# plug-ins.

Volatility Framework
 https://code.google.com/p/volatility/

 Open source!

 Capable of memory analysis of Windows, Linux (Android) and MacOS systems.

 Extensible, written in Python.

 No GUI yet.

http://www.mandiant.com/resources/download/redline
http://www.hbgary.com/hbgary-releases-responder-ce
https://code.google.com/p/volatility/

In-Memory Malware Analysis

  

What Can Be Found in Memory?

Almost everything!

 Malware :) (rootkits included)

 System information

 Hardware and software

 Processes and threads

 Loaded DLLs

 Network sockets, URLs, IP addresses

 Open files (and pipes)

 Mutexes/Handles

 User-generated content

 Passwords, clipboards, caches

 Encryption keys!

 E.g. for TrueCrypt (can be automated)

 Registry hives

 Event logs

 (Screen preview!)

Also, you can search for system inconsistencies – hidden processes, hidden drivers, non-system handlers

(interrupts handled by non-system processes).

In-Memory Malware Analysis

  

What to Search For?

 IRP (I/O Request Packets)

o Mostly focused at NTFS, DISK, FAT, TCPIP, NDIS and KBDCLASS drivers.

o Look for a single hook IRP_MJ_DEVICE_CONTROL.

o Use your brain and Google.

 SSDT (System Service Dispatch Table)

o Used by legit systems (HIPS, malware protection) and malware.

o Differentiating is not easy; use your brain and Google.

 Hooking to unresolved drivers is suspicious.

 Unsigned drivers are suspicious.

 Only a few hooks in place can be suspicious.

 IDT (Interrupt Descriptor Table)

o It allows attackers to subvert memory manager, keyboard events, system calls.

o Not much used, any IDT hook is suspicious :)

 Hidden processes, DLLs, drivers, …

 Process injections

 Process path/user inconsistencies

o E.g. svchost.exe executed from c:\windows\sytem32\dllcache\

o Running as a non-standard user.

 Open sockets, network connections

 Mutexes/Handles

 URLs (URL-like strings)

o URL-like strings can also be interesting! (e.g. http://%d%S/config.html)

 Anything suspicious!

o Malware can be digitally signed!

In-Memory Malware Analysis

  

Memory Injection
What is it and why is it so important?

A very simple definition: a mechanism of inserting dynamic library / malicious code in the process of

confidence.

Why? After successful injection the malware can use all the benefits of the original process. Thus, if the

malware injected the process of Internet Explorer, it can now bypass Windows Firewall and run its code in

any port. With some care, malware can also spy on the original process; can re-define some of the original

functions and/or event handlers.

Technical details and possible ways how the code can be injected into a running process can be found at:

1. http://resources.infosecinstitute.com/code-injection-techniques/

2. http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces

3. http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html (source of the

following image)

http://resources.infosecinstitute.com/code-injection-techniques/
http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html

In-Memory Malware Analysis

  

Well-known Suspicious Mutexes

Virus/Tool Name Mutex

Conficker .*-7 and .*-99

Sality.AA Op1mutx9

Flystud.?? Hacker.com.cn_MUTEX

NetSky 'D'r'o'p'p'e'd'S'k'y'N'e't'

YY99knPY

Sality.W u_joker_v3.06

Poison Ivy)!VoqA.I4

koobface 35fsdfsdfgfd5339

Expected Paths

Process Expected Paths

lsass.exe \windows\system32

services.exe \windows\system32

csrss.exe \windows\system32

explorer.exe \windows

spoolsv.exe \windows\system32

smss.exe \windows\system32

svchost.exe \windows\system32

iexplore.exe \program files
\program files (x86)

winlogon.exe \windows\system32

In-Memory Malware Analysis

  

Suspicious Imports

Scenario #1
 GetProcAddress

 LoadLibrary

o What the binary can do with these calls?

o What if the binary doesn’t contain any other import?

Scenario #2
 CreateToolhelp32Snapshot

 Process32Next

 Process32First

o What the binary/process can do with these calls?

Scenario #3
 Ws2_32.dll / msock32.dll

 Wininet.dll

 Netapi32.dll

o Network-related imports; can they be present in calc.exe? And in svchost.exe?

In-Memory Malware Analysis

  

Volatility Cheat Sheet
Source: https://blogs.sans.org/computer-forensics/files/2012/04/Memory-Forensics-Cheat-Sheet-v1_2.pdf

 vol.py –h / vol.py plugin –h / vol.py plugin --info (help)

 vol.py –f image.file imageinfo (info about the image, useful for further steps)

 vol.py -f image.file --profile=profile plugin (sample command line)

o export VOLATILITY_LOCATION=image.file

o export VOLATILITY_PROFILE=WinXPSP3x86

 can save you some typing

 vol.py –f image.file –profile=profile <plugin>

o psxview (look for hidden processes)

o apihooks

o driverscan

o ssdt / driverirp / idt

o connections / connscan (WinXP, list of open TCP connections / all TCP connections)

o netscan (Win7, scan for connections and sockets)

o pslist / psscan (high-level process list vs. scan for EPROCESS blocks)

o malfind / ldrmodules (find injected code, dump sections / detect unlinked DLLs)

o hivelist (find and list available registry hives) / hashdump

o handles / dlllist / filescan (list of open handles / DLL files / FILE_OBJECT handles)

o cmdscan / consoles (find the history of cmd.exe / console buffer)

o shimcache (application compatibility info)

o memdump / procmemdump / procexedump

https://blogs.sans.org/computer-forensics/files/2012/04/Memory-Forensics-Cheat-Sheet-v1_2.pdf

In-Memory Malware Analysis

  

Homework
The task is simple. Analyze the given memory image, find all irregularities there, prepare a formal report

and document your findings. The more details and information you provide, the more points you get.

Please note that you have to present me not only your results, but also the tools you used

in the whole process described in your report. If you use Redline for one part of the

analysis and Volatility for another please document it. I have to be able to follow your

investigation in order to validate the steps you took.

File: homework.zip

Hints:

 should be similar to one of the lecturing samples,

 watch for suspicious connections,

 do not forget to check execution times,

 find suspicious URLs, if there are any,

 can you find the source of the infection? And any technical details? (Google is your friend)

In-Memory Malware Analysis

  

References and further reading

1. https://code.google.com/p/volatility/wiki/PublicMemoryImages

2. https://www.mandiant.com/blog/precalculated-string-hashes-reverse-engineering-shellcode/

3. https://github.com/iagox86/nbtool/blob/master/samples/shellcode-win32/hash.py

4. http://blog.spiderlabs.com/2013/04/basic-packers-easy-as-pie.html (simple unpacking, not UPX)

5. http://zeltser.com/remnux/ -- REMnux. All you need to do a reverse engineering.

6. http://www.deer-run.com/~hal/Detect_Malware_w_Memory_Forensics.pdf

7. http://downloads.ninjacon.net/downloads/proceedings/2011/Michael_J_Graven-

Finding_Evil_in_Live_Memory.pdf

8. http://www.skullsecurity.org/blog/2013/ropasaurusrex-a-primer-on-return-oriented-programming

(Practical introduction into Return Oriented Programming)

https://code.google.com/p/volatility/wiki/PublicMemoryImages
https://www.mandiant.com/blog/precalculated-string-hashes-reverse-engineering-shellcode/
https://github.com/iagox86/nbtool/blob/master/samples/shellcode-win32/hash.py
http://blog.spiderlabs.com/2013/04/basic-packers-easy-as-pie.html
http://zeltser.com/remnux/
http://www.deer-run.com/~hal/Detect_Malware_w_Memory_Forensics.pdf
http://downloads.ninjacon.net/downloads/proceedings/2011/Michael_J_Graven-Finding_Evil_in_Live_Memory.pdf
http://downloads.ninjacon.net/downloads/proceedings/2011/Michael_J_Graven-Finding_Evil_in_Live_Memory.pdf
http://www.skullsecurity.org/blog/2013/ropasaurusrex-a-primer-on-return-oriented-programming

