INn-Memory Malware
ANalysis

PV204 Laboratory of security and applied
cryptography II

Course handouts and notes. // Vaclav Lorenc

In-Memory Malware Analysis

INn-Memory Malware
Analysis

PV204 Laboratory of security and applied cryptography
II

Before we start...

A short introduction, how a common attack (let’s assume we are

talking about targeted attacks) is usually performed:

1. Reconnaissance

2. Weaponization
3. Delivery

4. Exploitation

5. C2

6. Exfiltration

Malware phases/stages:

1. System Infection / Exploit
Dropper / Downloader (multi-stated)
Callbacks

Configuration / Updates

S

Removal

How to use in-memory analysis?

1. Run malware / acquire memory.
2. Analyze memory, have fun.
3. 7?7

4. Profit!

How to setup
your lab
system¢@

Oracle VirtualBox (or
another virtualization
technology capable of
making snapshots and
memory dumps).
Windows XP/7/8
license or trial
Memory dumping tool
Adobe Reader and any
other vulnerable
software you consider

as important.
(if possible, disable swap)
Debuggers

Disassembles

Text editors

In-Memory Malware Analysis

Reverse Engineering for Beginners (x86)

Reqisters

BL BX EBX RBX

o x . Ex R

DL DX EDX RDX

st BT RI
DI EDI RDI

B EBP RBP
SP ESP RSP

And of course, instructions pointer (IP/EIP/RIP) and flags (flags/rflags), segment registers (CS, SS,
DS, ES, GS, FS), FPU registers, SSE, SSE2, ...

BTW: BX register can be used for loops (like many other registers), but LOOP instruction works with (E)CX.

Instructions “families”

mov

xlat aesenc
retn smsw vfmsubadd132ps

Function Entry/Exit
push ebp
mov ebp, esp
sub esp, X

mov esp, ebp

pop ebp
ret X ; sizeof(x) + sizeof(y) + sizeof(z)

More Information
Very nice PDF published by Dennis Yurichev with introduction into Reverse Engineering, assembly

and some more advanced topics: http://yurichev.com/non-wiki-files/RE for beginners-en.pdf

http://yurichev.com/non-wiki-files/RE_for_beginners-en.pdf

In-Memory Malware Analysis

Ofther interesting/necessary topics

Memory addressing
e Segmentation/Paging/Virtualization

e Process vs. Kernel space and addresses; DLL/process injection
Executable formats

e Legacy DOS formats (DOS, EXE)

e Portable Executable (PE), symbol imports, DLL loading

Non-documented instructions/behavior
e Intel vs. AMD; Virtual Machines

Calling conventions
e cdecl
e stdcall (most common on Windows)
e fastcall
Anti-debugging tricks
e Exceptions, interrupts, time checking, debuggers detection, PE header manipulation, PEB
manipulation...
Anti-VM tricks
e looking for uncommon sequences and/or behavior (CPUID instruction, e.g.); BIOS analysis
¢ Windows registry keys presence
Code obfuscation/packing
e Virtualization (own instruction interpreters)
e UPX/ASPack — the most famous packers
e Usually combined with the previous techniques

Getting current IP (instructions pointer)
e near/far calls or jumps, useful for shellcodes

Win32 API Calls

e API hash strings, trampolines, ... (to prevent detection)

Crypto Algorithms

e Xor, aes, rc4, rsa
Data Execution Prevention & others
e DEP (Data Execution Prevention)
e ASLR (Address Space Layout Randomization)

e The previous techniques can (of course) be bypassed: ROP (Return Oriented Programming)

In-Memory Malware Analysis

Images

All the images were taken from Corkami Project webpage (https://code.google.com/p/corkami/).

Index of images:

= COM file, DOS executable walkthrough
* PE, Portable Executable walkthrough

https://code.google.com/p/corkami/

In-Memory Malware Analysis

COM™ 0 DOS executable walkthrough = "G

DISSECTED FILE

BE 1F BR E 81 B4 89 CD 21 BS 81 4C CD 21 cessailailiel
X86 16BITS ASSEMBLY® EQUIVALENT C CODE

push Cs

pop DS // copy CODE segment to DATA segment

mov DX, msg
1 H 9

S1A4 IUEDITTRETOES

int 0x21

3d02

Q3LND3IX3 S.LYHM

v
pr;nt(Hello world!\r\r\n");
C:\>SIMPLE.COM

e SIMPLE.COM 25 o i
int 0x21 ~return 1;

“THE DOS CODE OF A STANDARD PORTABLE EXECUTABLE FILE IS DENTICAL

Offset: 80eE
Address: cs:016E

TRIVIA G A W Teerbil
COMFILES ARE USED BY MCROSOFT SINCE 1981 o
AND STILL RUN ON ANY 32-BIT WINDOWS TODAY "He'no WorldI\r\r\n" $-terminated

300D 3HL A€ Q3SN NOILYWIOMI

EXPLANATIONS ARE SIMPLIFIED, FOR CONCISENESS

KEY CONCEPTS

FILE SPECIFICATIONS MEMORY SEGMENTATION LOADING PROCESS OPERATING SYSTEM'S FUNCTIONS
NO HEADER DOS MEMORY IS CUT INTO BLOCKS THE FILE IS ENTRELY LOADED CALLED VIA INTERRUPTS + FUNCTION CODE IN AH
LIMTED TO ~64KiB THEY ARE CALLED SEGMENTS OFFSET 8IS MAPPED AT c5:0X188 EXAMPLES
MERGED CODE AND DATA ADDRESSES ARE DEFINED BY: EXECUTION STARTS THERE INTERRUPT @x21 FUNCTION 8x89
USUALLY WITH NO BOUNDARES A SEGMENT /] PRINTS A $-TERMNATED STRING AT DS: DX

AN OFFSET WITHIN THAT SEGMENT

INTERRUPT @x21 FUNCTION 8x4C
THEY ARE WRITTEN segment:of fset

2 TERMNATES THE PROCESS
RETURN VALUE GIVEN IN AL

101

ates s

In-Memory Malware Analysis

ANGE ALBERTINI
CORKAM.COM

DISSECTED PE

P]
e HtrCI

a windows exe(}u‘tﬂble WﬂlKﬂ\’(OU\ﬂh e

HEADER

TECHNCAL DETALS ABOUT THE EXECUTABLE / :

60 90 00 08-49 00 B9 40-2C ¢4 &1 74-61 Be 06 @0
{86 10 B0 G-DA 33 60 66-AB A2 B2 0-BO B6 B 06
186 00 46 0A-0 B3 B0 6B-AB @B 08 PB-40 BA B (6

SIMPLE EXE

HEXADECIMAL DUMP ASCH DUMP FELDS VALUES EXPLANATION
[- - -
D 5A @@ @6-08 04 @6 @6-80 @D 0 00060 B8 B8 08 HZ e magic "zt CONSTANT SENATURE
6788 80 08-08 88 6 GE-an BB BB BB-16 5 66 47 el fane (e |
Signature "pE CONSTAIT SGHATLRE
s g
5845 B Ba-4C 81 03 00-09 B9 0@ PB-00 O A B0 PE.. . r— °"1“ finer 356 e L
CLICULUE eI LR Lo N sizeofoptionalteader o e0 RELATIVE OFFSET OF THE SECTION TABLE 2
Characteristics 0x102 [32b EXE] EXEMLLL
— Magic 0x10b [32b] 32 BITSIEABTS
B . addressofentrypoint 0x1000 WHERE EXECUTION STARTS 5
95 66 56 06-60 53 85 Shas 10 ch coon on e e Inagesase 0x400000 ADERESS WHERE THE FLE SH0ULD BE MAPPED I FEMGRY 3
DOS HEADER Sectionalignment 0x1000 WHERE SECTIONS SHOULD START 1 MEMORY
SOMSITS A Y @9 @9 @6 06-08 08 4 96-8¢ 1 6 89-80 B2 B9 89 FileaTignnent 0x200 WHERE SECTIONS SHOULD START ONFLE. 2
80 BB 86 06-08 B BB BB-a¢ 4G BB 6O-8O BE BE B Majorsubsystemversion 4 [NT 4 or later] REQURED VERSON OF WIOOWS
PE HEADER 80 48 B8 PE-PA B2 B0 66-88 8@ 0@ BO-B2 @B ©8 B8 sizeofImage 0x4000 TOTAL MEMORY SPACE REQURED
SHNAS T3 A FEXCENY By 90 B9 B9 PE-99 00 69 ©0-90 00 09 99-00 @0 60 89 sizeofueaders 0x200 TOTAL SZE OF THE HEADERS 3
R 80 B9 86 06-18 08 @6 @6... Subsystem 2 [ou1] CRVER/GRAPHCALICOMHAND LFE/
LR e L NumberofRvaAndsizes 16 IUVBER OF DATA DRECTORES 4
OPTIONAL HEADER
TR ...HB BB BB BO-0O BE BO B8 .
06 20 9 0G-0 0@ 80 83-8F B9 0D 0A-6A 8O BO 60 Tmportsva 0x2000 UAOF THE MRRTS 4
09 PG 96 P6-9A 0A 9 66-d @ B9 B9-60 B9 8O 69
DATA DRECTORES EEE
FONTERS T0 EXTRASTRUCTLRES EXFIRTS FFORTS. 2E 74 65 78-74 88 88 88 SECTIONS TABLE
80 10 B9 06-00 10 60 6000 B2 00 00-00 02 06 00 i [A PRGN BTET
@9 @9 @6 96-98 0G 00 -8 B 6 09-20 BO A 60 VRTUALSZE VRTUALADORESS SIZEFRANDATA _PONTERTORAWDATA CHARACTERTICS
'2E 72 64 61-T4 61 B0 8B-a0 16 65 00-08 20 B8 48 0x1000 O T X X CODE_EXECUTE READ
SECTIOHS TABLE 60 B2 B4 DA-0B B4 89 AG-B BB PG 0A-60 B4 BO A8 0x1000 _0x2000 0x200 LiLL) I LD koA
TS FOW THE FLE 5 LOALED RFEARY L 0x1000. 0x3000 T 0KE00 T T 0X600

FOREACH SECTION, A SZECFRAWDATA SIZED BLOCK, IS READ FROM THE FLE AT POINTERTORAWDAT A OFFSET,
1T WLL BE LOADED NPMEMIRY AT ADDRESS MAGEBASE - VRTUALADDRESS I A VR

SI7E SZED BLOCK, WITH SPECFIC CHARAC TERISTICS.

%86 ASSEMBLY EQUIVALENT C CODE
push 0
MU SECOITED push 0x403000
e h 0x403017
SECTIOHS GA 06 6 0030 40 08 6517 30 48 09-6R 00 FF 15 J.1.80..00.J Posh 0
- 78 20 40 0e-ch 69 FF 15-68 28 48 09 pgJ. -h.@ call [0x402070] ~wessagegm(0, Hello marldi 4 simple ré executable’, 0);
CONTENTS OF THE EXECUTABLE RTS push 0 5
LICBE TWEEN T EXELLTARLE A WTEONS LBRAEES call [0x402068) ~exiterocesstb);
IMPORTS STRUCTURES CONSEQUENCES
prp— CESCRPTORS
3C 26 8B 08-pA 6O 86 B9-80 BB 68 00— 73 za -e L) ox204c, 0™
68 20 BB 08-44 20 B0 60-26 D -
IFCRHATION USEDIBY TWE CODE 85 28 88 PB-78 20 B0 8A<IT e @ -' " & i=kernel32.d11 0,ExitProcess
e . AFTER LOADING,)
86 B0 88 O i 35 96-88 88 45 . 0x204c, 0" 0X/2068 WILL POINT TO KERNEL3ZDLL'S EXITPROCESS
69 74 58 72-6F 63 65 73-73 @8 08 00-4D 65 73 73 {tProcess...Mess Ox2044 —————— 02 ™ 0X402070 WILL POINT TO USER3ZDLL"S MESSAGEBOXA
61 67 65 42-6F 78 41 B9-4C 20 08 €0-00 00 0O 0O agedOXA.L. -
5A 20 80 0899 99 B9 0048 €5 12 6E-55 6C 33 32 Z.......kerneld2 0x2085~uscri2.dll 0, Mes5ageBOXA
2E 64 6C 6C-B@ 75 73 65-72 33 32 2E-64 6C 6C 88 .dl11.user32.dll -
0x2070 0x205a, 0"
: w s el
-
él ZB 3 5? Bﬂ 78 6C £5-28 58 45 20-65 78 65 63 a.simple.PE.exec a simple Sl?lﬁtfes(utable\ﬂ
75 74 61 62-6C 65 BB 48-65 6C 6T 6F-28 77 6F 72 utable.Hell0.wor aiig worldino
6C 64 21 08 ld!.
T 5 T WAOLE FLE OWEVER 5T FE FLES CONT AP FLETEATS
P 4B STPLFED, OR CONCINESS
| HEADERS 3 MAPPING 4 MPORTS 9 EXECUTION ey
i - e e N o s e -~ STARTS WITH MZ INVTIALS OF MARK ZBKOWS 15-DOS EVELOPER)
THE DOS HEADER IS PARSED THE FLE IS MAPPED I MEPMORY ACCORDIS T DATAGREC TCRES ARE PARSED CODE IS CALLED AT THE ENTE
THE PE HEADER IS PARSED THE MAGEBASE THEY FOLLOW THE OPTIONALHEADER: THE CALLS OF THE CODE G0 VIA THE IAT TO THE APS. ;;r{&;a(;tm{;;&gﬁégr R
ATSOFFSET (5,005 HEADER S E_LFANEW] THE SZEOFHEADERS THER NUMBER IS RUMOFRVAANDSIZES -
THE OPTIONAL hE:DEK?‘SPAP.SED THE SECTIONS TABLE PORTS ARE ALWAYS $#2 OPTIOMAL HEADER AKA IMAGE_OPTIONAL_HEADER
AT FOLLOWS THE PE HEATER) FPORTS AFE PARSED e N OPTIONAL ORLY FOR NON-STANDARD PES BUT REQURED FOR EXECUTABLES
EACH DESCRIPTOR SPECFES A DLLMAME. RVARELATIVE VIRTUAL ADORESS
iI i THIS DLL IS LOADED IN MEMORY ADORESS RELATIVE TO MAGEBASE (AT MAGEBASE, RVA - 01
2 SECTIOHS TABLE H IAT AND INT ARE PARSED SIMULTAREQUSLY ALMOST ALL ADDRESSES OF THE HEADERS ARE RVAS
H f FOR EACH 4P1 N IVT Hello warld! INCODE, ADDRESSES ARE NOT RELATIVE
SECTIONS TABLE 5 PARSED o IT$ ADORESS 5 WRITTEN IN THE (AT ENTRY.
AT 15 LOCATED AT OFF SET (0P TNHALHEADER « SZEOFCPTIONALHEADER) P g, INT MPORT NAME TABLE |
T CONTAINS NUMBERDF SECTIONS ELEMENTS T socams NULL-TERMMATED LIST OF POITERS TO HNT. NAME STRUCTURES
716 CHECKED FOR VALDITY WITH ALGNMENTS: i P — o > IAT MFORT ADDRESS TABLE
FLEALGIPENTS 40 SECTORMUGTENTS i Barken |, IAT MALL-TERMMATED LIST OF PORTERS.
il ONFLE T 5 A COPY OF THE T

o

Hint,"API name"

D

AFTER LOADIG [T POINTS TO THE MPORTED APIS

AT

INDEX M THE EXPORTS TABLE OF A DLL T0 BE MPORTED.

MOT REQURED BUT PROVIDES A SPEED-UP BY REDUCING LOOK-UP

INn-Memory Analysis

Even though doing an advanced reverse engineering could be life
changing experience, analyzing malware in this depth usually needs
some good clarification. In many security teams, one of the first steps

in incident classification is a triage.

For that reason, in-memory analysis of a running malware might be

beneficial.

However, there are many other good reasons why a security engineer
should do in-memory analysis first. You should use it when...

* Doing a rapid threat assessment — very efficient method.

* Infected host is online and available for the analysis, not restarted
yet.

* There is a chance that the original binary is gone (transient
infections).

* There was no original binary stored on the infected host.

* You cannot read JavaScript/Java or any other exploited
application’s code and vulnerability triggered.

* Messing with packers and obfuscated code can be annoying.
Indeed.

* Even though you can pass many defenses put in place by
attackers, after many hours you can find one that cannot be
broken because of missing DLL/configuration file.

* Some data are being exfiltrated memory can contain important

evidence — attackers steps, passwords, tools used, ...

Recommended
Tools

There are some publicly
available tools that can be
used for memory
analysis. They differ in
capabilities, supported

systems and licensing.

1. Volatility Framework
HBGary Responder
Mandiant Redline

F-Response

e G o> W N

grep/strings :)

My preferred tools are
Volatility and HBGary
Responder (Pro Edition).
The first one is great for
its broad scope of system
that can be analyzed, the
second for graphical
debugger.

In-Memory Malware Analysis

Memory Acquisition Tools and Techniques (Windows OS)

1. Virtual machine memory dump
* Not applicable for many hosts (laptops, servers).
* Super useful for malware analysis when the malware doesn’t do any anti-VM tricks.
* Don’t forget to configure as little memory as possible for the running system; it will
significantly speed up your analysis.
= VirtualBox, VMWare can do this, VMWare more convenient.

2. FastDump (Pro)

® HBGary solution, small footprint, one of the best tools available.
® Cannot be obtained easily, official pages don’t work well; Pro version is expensive.
]

Can acquire memory that is currently swapped-out!

¥ This can be critical for non-VM systems!
3. Memoryze

® Free tool by Mandiant.

" Quite big footprint, XML files, installer.

4. Win32dd.exe

® Not available anymore, replaced by MoonSols Windows Memory Toolkit.

5. MoonSols Windows Memory Toolkit

® Community Edition available.

® Single binary, small footprint.

6. Forensic tools (EnCase, Mandiant, Access Data, ...)

¥ Remote acquisitions (over the network), compressed images, using already-installed drivers,

thus no tampering with the system memory.

® Corporate tools -- inhuman expensive ;)

In-Memory Malware Analysis

Memory Analysis Tools

Mandiant Redline

http://www.mandiant.com/resources/download/redline

For free, available for Windows XP, Vista and 7 (32-bit and 64-bit).
Malware risk scoring index.
* Helps to assess system quickly.

* List with system and well-known good apps, suspicious mutexes, etc.

HBGory Responder (CE/Pro)

http://www.hbgary.com/hbgary-releases-responder-ce

Community Edition is available against registration.
Available for Windows XP, Vista and 7.
Nothing really awesome unless you use Pro Edition.
* Simple disassembler with graphing features, priceless.
* Digital DNA - very good process/memory scoring system.

Can be extended by C# plug-ins.

Volatility Framework

https://code.google.com/p/volatility/

Open source!
Capable of memory analysis of Windows, Linux (Android) and MacOS systems.
Extensible, written in Python.

No GUI yet.

http://www.mandiant.com/resources/download/redline
http://www.hbgary.com/hbgary-releases-responder-ce
https://code.google.com/p/volatility/

In-Memory Malware Analysis

What Can Be Found in Memory?¢

Almost everything!

= Malware :) (rootkits included)
» System information
» Hardware and software
= Processes and threads
= Loaded DLLs
= Network sockets, URLs, IP addresses
* Open files (and pipes)
= Mutexes/Handles
» User-generated content
* Passwords, clipboards, caches
* Encryption keys!
* E.g. for TrueCrypt (can be automated)
* Registry hives
*= Event logs

» (Screen preview!)

Also, you can search for system inconsistencies — hidden processes, hidden drivers, non-system handlers

(interrupts handled by non-system processes).

In-Memory Malware Analysis

What to Search For¢

= IRP (I/O Request Packets)
o Mostly focused at NTFS, DISK, FAT, TCPIP, NDIS and KBDCLASS drivers.
o Look for a single hook IRP_M]_DEVICE_CONTROL.
o Use your brain and Google.
*= SSDT (System Service Dispatch Table)
o Used by legit systems (HIPS, malware protection) and malware.
o Differentiating is not easy; use your brain and Google.
* Hooking to unresolved drivers is suspicious.
* Unsigned drivers are suspicious.
* Only a few hooks in place can be suspicious.
* DT (Interrupt Descriptor Table)
o It allows attackers to subvert memory manager, keyboard events, system calls.
o Not much used, any IDT hook is suspicious :)
* Hidden processes, DLLs, drivers, ...
* Process injections
* Process path/user inconsistencies
o E.g. svchost.exe executed from c:\windows\sytem32\dllcache\
o Running as a non-standard user.
* Open sockets, network connections
* Mutexes/Handles
* URLs (URL-like strings)
o URL-like strings can also be interesting! (e.g. http://%d%S/config.html)
* Anything suspicious!

o Malware can be digitally signed!

In-Memory Malware Analysis

Memory Injection
What is it and why is it so importante

A very simple definition: a mechanism of inserting dynamic library / malicious code in the process of

confidence.

Why? After successful injection the malware can use all the benefits of the original process. Thus, if the
malware injected the process of Internet Explorer, it can now bypass Windows Firewall and run its code in
any port. With some care, malware can also spy on the original process; can re-define some of the original

functions and/or event handlers.
Technical details and possible ways how the code can be injected into a running process can be found at:

1. http://resources.infosecinstitute.com/code-injection-techniques/

2. http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces

3. http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html (source of the

following image)

Overview
Step 1

Process B Attach > Process A

OpenProcess();

y

‘ Choose: DLL Path or Full DLL ‘

Step 2
Allocate Memory

VirtualAllocEx();

A 4

Step 3 Copy DLL/Determine
Addresses -

WriteProcessMemory();

DLL

DLL Path: Full DLL:
LoadLibraryA(); Get..0ffset();

Step 4
Process B Execute R

CreateRemoteThread();r DLL
NtCreateThreadEx();
RtlCreateUserThread();

http://resources.infosecinstitute.com/code-injection-techniques/
http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html

In-Memory Malware Analysis

Well-known Suspicious Mutexes

Virus/Tool Name Mutex

Conficker .*¥-7and .*-99

Sality.AA Op1mutx9

Flystud.?? Hacker.com.cn_MUTEXE

NetSky ‘D'r'o'p'p'e'd'S'k'y'N'e't'H
YY99knPY

Sality. W u_joker_v3.06

Poison Ivy)!VogA.I4

koobface 35fsdfsdfgfd5339

Expected Paths

‘Process ~ ExpectedPaths

lsass.exe \windows\system32
services.exe \windows\system32
csrss.exe \windows\system32
explorer.exe \windows
spoolsv.exe \windows\system32
smss.exe \windows\system32
svchost.exe \windows\system32
iexplore.exe \program files
\program files (x86)

winlogon.exe \windows\system32

In-Memory Malware Analysis

Suspicious Imports

Scenario #1
= GetProcAddress

= LoadlLibrary
o What the binary can do with these calls?

o What if the binary doesn’t contain any other import?

Scenario #2
= CreateToolhelp32Snapshot

= Process32Next

= Process32First

o What the binary/process can do with these calls?

Scenario #3
= Ws2 32.d11 / msock32.dll

= Wininet.dll
= Netapi32.dll

o Network-related imports; can they be present in calc.exe? And in svchost.exe?

In-Memory Malware Analysis

Volatility Cheat Sheet

Source: https://blogs.sans.org/computer-forensics/files/2012/04/Memory-Forensics-Cheat-Sheet-vl 2.pdf

= vol.py -h / vol.py plugin -h / vol.py plugin --info (help)
* vol.py -f image.file imageinfo (info about the image, useful for further steps)
* vol.py -f image.file --profile=profile plugin (sample command line)

o export VOLATILITY_LOCATION=image.file

o export VOLATILITY_PROFILE=WinXPSP3x86

* can save you some typing
= vol.py -f image.file -profile=profile <plugin>
o psxview (look for hidden processes)
o apihooks
o driverscan
o ssdt / driverirp / idt
o connections / connscan (WinXP, list of open TCP connections / all TCP connections)
o netscan (Win7, scan for connections and sockets)
o pslist / psscan (high-level process list vs. scan for EPROCESS blocks)
o malfind / ldrmodules (find injected code, dump sections / detect unlinked DLLs)
o hivelist (find and list available registry hives) / hashdump
o handles / dlllist / filescan (list of open handles /DLL files / FILE_OBJECT handles)
o cmdscan / consoles (find the history of cmd.exe / console buffer)
o shimcache (application compatibility info)

o memdump / procmemdump / procexedump

https://blogs.sans.org/computer-forensics/files/2012/04/Memory-Forensics-Cheat-Sheet-v1_2.pdf

In-Memory Malware Analysis

Homework

The task is simple. Analyze the given memory image, find all irregularities there, prepare a formal report

and document your findings. The more details and information you provide, the more points you get.

Please note that you have to present me not only your results, but also the tools you used
in the whole process described in your report. If you use Redline for one part of the
analysis and Volatility for another please document it. I have to be able to follow your
investigation in order to validate the steps you took.

File: homework.zip
Hints:
e should be similar to one of the lecturing samples,
e watch for suspicious connections,
e donot forget to check execution times,
e find suspicious URLs, if there are any,

e can you find the source of the infection? And any technical details? (Google is your friend)

In-Memory Malware Analysis

References and further reading

1. https://code.google.com/p/volatility/wiki/PublicMemoryImages

2. https://www.mandiant.com/blog/precalculated-string-hashes-reverse-engineering-shellcode/

3. https://github.com/iagox86/nbtool/blob/master/samples/shellcode-win32/hash.py

4. http://blog.spiderlabs.com/2013/04/basic-packers-easy-as-pie.html (simple unpacking, not UPX)

5. http://zeltser.com/remnux/ -- REMnux. All you need to do a reverse engineering.

6. http://www.deer-run.com/~hal/Detect Malware w Memory Forensics.pdf

7. http://downloads.ninjacon.net/downloads/proceedings/2011/Michael | Graven-

Finding Evil in Live Memory.pdf

8. http://www.skullsecurity.org/blog/2013/ropasaurusrex-a-primer-on-return-oriented-programming

(Practical introduction into Return Oriented Programming)

https://code.google.com/p/volatility/wiki/PublicMemoryImages
https://www.mandiant.com/blog/precalculated-string-hashes-reverse-engineering-shellcode/
https://github.com/iagox86/nbtool/blob/master/samples/shellcode-win32/hash.py
http://blog.spiderlabs.com/2013/04/basic-packers-easy-as-pie.html
http://zeltser.com/remnux/
http://www.deer-run.com/~hal/Detect_Malware_w_Memory_Forensics.pdf
http://downloads.ninjacon.net/downloads/proceedings/2011/Michael_J_Graven-Finding_Evil_in_Live_Memory.pdf
http://downloads.ninjacon.net/downloads/proceedings/2011/Michael_J_Graven-Finding_Evil_in_Live_Memory.pdf
http://www.skullsecurity.org/blog/2013/ropasaurusrex-a-primer-on-return-oriented-programming

