X80 & PE

o 28" December 2011
Ange Albertini

1,
before you decide to read further... 0‘%&%@

Contents of this slide deck:
1. Introduction

1. introduce Corkami, my reverse engineering site
2. explain (in easy terms)
1. why correct disassembly is important for analysis
2. why undocumented opcodes are a dead end
2. Main part
1. a few examples of undocumented opcodes and CPU weirdness
2. theory-only sucks, so | created CoST for practicing and testing.
3. CoST also tests PE, but it's not enough by itself
4. So | documented PE separately, and give some examples.

Improved, but similar

F 0250 =

Author

Corkami

reverse engineering

technical, really free

MANY handmade and focused PoCs
- nightly builds
- summary wiki pages

but... only a hobby!

“there's a PoC for that”

and if there's none yet, there will be soon ;)

http://www.corkami.com/
file:///D:/_nc10/sources/corkami/trunk/builds/

istruc IMAGE D03 HEADER
at IMAGE D03 HEADER.e magic, db 'ZH'
at IMAGE D03 _HEADER.e_chlp, db- LAIT BYTE ;o onot- kel
at IMAGE D0O3_HEADER.e_cp, dw PAGES
at IMAGE D03 HEADER.e cparhdr, dw dosz_stub ==

;-code start must be paragraph-aligned

aligm , dhb

dos_atuh:
push D>dosZMKP . exe
pop = BEHE with ZM signature

|locode = "7, join([
GETSTATIC, struct.pack{">H", 1&g},
LDC, struct.pack{"=E", 18},
INVOEEVIRTUAL, struct.pack{">=H", 23}
RETUEN,
1}

attribute code = "7, join([

struct.pack{"=H", 7y, # code

Judlength{”".join([
struct.pack({"=H

An bl o T MR > java Hellolorld
udlengthicode) , LHNURIIE N R

¢ demo java

File Edit iew window Help

Hello World!

!s helloworld-X - Notepad =

File Edit Format Miew Help
*PDF-1.

1 0 obj<</Kids[<</Parent 1 0 R/Contents[2 O R]»»]/REsources<<rsz»
2 0 obj<<s»

streameT A default 99 T7f 1 0 0 1 1 715 Tm(Hello world!JTj ET
endstream
endob]j

trailer<</Root<</Pages 1 0 R>>>>

1atruc 1Pal-k UFLULUNAL HEADEER G-
at IMAGE OPTIONAL HEADER3IZ.Magic,
bits
EntryPoint:
push message
call [imp printf]
jmp 2
at IMAGE OPTIONAL HEADER3IZ.Address0OfEntry
at IMAGE OPTIONAL HEADER3IZ.BaseOfCode, dd

o -
-
add , *
retn D>tiny

el = Z68h universal tin

the story behind this presentation

OF20 Unknown command
90

OF18 Unknown command
3890 E

Command "MakeCode" failed

90
AF 2090 #U (mod)

OF 1838 #UD
90

CORKAMI

X860

CORKAMI

“Achievement unlocked”

Low memory! | 23 | ,“ — | .
.* Uziol o 2laeets 22t (5r ek, iz o memen '.8 > \ bTree error: memory allocation error (for struct PAGE)
| Don't dizplay this meszage in the future —
L Ok |[Hep |

A problem has been detected and windoy
L0 your computer.

_EntJPAGE_FAULT_IN_NONPAGED_AREA

(Authors notified, and most bugs already fixed)

Agenda

|. why does it matter?

|. assembly
Il. undocumented assembly

Il.x86 oddities

(technical stuff starts now)

[1l.CoST
I\.a bit more of PE

assembly, in 8 slides

from C to binary

:—#iﬁclhdé “stdatx. h”
#include "helloworld.h"

int APIENTRY _tWinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
. LPTSTR lpCmdLine,
E int nCmdShow)

MessageBoxA(@, "Hello World !™, “"Tada !™, MB_TCONINFORMATION); -
ExitProcess(@);

helloworld

#include "stdafx.h"
#tinclude "helloworld.h"

inside the binary

int APIENTRY _tWinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,

LPTSTR

int

lpCmdLine,
nCmdShow)

MessageBowA(@, "Hello World !™, "Tada !™, MB_TCONINFORMATION);

aal2laaa oA 48

pal2lea2 68 F4 20 12 08
pal2lea7 68 FC 20 12 60
pal2lea’ cA b6
@al21@@E FF 15 AC 280 12 @

ExitProcess(@);

8a121814 6A B8

pal21ele FF 15 @@ 28 12 @4

push
push
push
push
call

push
call

4ah

offset string "Tada !" (1228F4h)

offset string "Hello World !™ (1228FCh)
@

dword ptr [imp MessageBowA@le (1228ACh)]

@
dword ptr [imp ExitProcessfid (1228@8h)]

order

#include "stdafx.h"
#tinclude "helloworld.h"

int APIENTRY _tWinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPTSTR lpCmdLine,

1 int nCmdShow)

{
|Hessageﬁﬂxﬁ(ﬂ, "Hello World '™, "Tada !", HE_IEGMIMFGRHATIGM};' :2

pel2led@yeR "M~ """ O ¢ 1V dp———{ i - i n e :
#2121002,68 F4 20 12 @0 : épush offset string "Tada !" (1228F4h) :
B@1210@7.68 FC 20 12 @8 . épush offset string "Hello World !™ (1228FCh)
EElZlEEE:EA aa : gpush @ :
POLZLOOETT 5 QL 28 12 P00 A dword PEL femi TPt e352ReB0XA016 (1220ACh) |1

ExitProcess(@); 23
8a121814 6A B8 push @

3121816 FF 15 @8 28 12 @@ call dword ptr [imp ExitProcessfid (1228@8h)]

our code, 'translated’

#include "stdafx.h"
#tinclude "helloworld.h"

int APIENTRY _tWinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPTSTR lpCmdLine,

int nCmdShow)
L o ——
|Hessaﬁeﬁﬂxﬁlﬂ "Hello World !"; "Tada "] MB_ICONINFORMATION)
@e121000 6A 40 aush - oh -
@a121002 68 F4 28 12 @8 push offset string "Tada !" |(1228F4h)
pe121087 68 FC 20 12 80 push offset st Flng""i%'ﬁi".:_."é"'"l'iﬂ """ 12 (1220FCh)
P012100C 6A 00 push -]
EEl%JE@z.ii.lﬁ.:[28 12 o4a call dword ptr [imp |MessageBoxAfle (1228ACh)]
| Exitrocess(o);
8a121814 6A B8 push @

3121816 FF 15 @8 28 12 @@ call dword ptr [imp JExitPr cce:mm4 (122@@8h)]

opcodes < assembly

#include "stdafx.h"
#tinclude "helloworld.h"

int APIENTRY _tWinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,

LPTSTR lpCmdLine,
int nCmdShow)
{
MessageBoxA(@,
0121000 6A 40 pus
ae121002[63kF4 20 12 @0: pUS
aa121007 68[FC 36 13 BB nush
PA12100C GA PO ush
G@12100E' FF,15 AC 20 12 @@ scali’
ExitProcess(@);
PR121814 GA 9B push
EElElElC'=='15 pe 20 12 00 .caII'

"Hello World !™, "Tada !™, MB_ICONINFORMATION);

4h

offset string "Tada '"jL%%%E"ﬂhl‘

offset string "Hello World !™ (1228FCh)

@

dword ptr [imp MessageBowA@le (1228ACh)]
@

dword ptr [imp ExitProcessfid (1228@8h)]

MessageBoxA(@,
pa121000
Bal21082
pal2laa’
Ba1218aC
Ba1218aE

ExitProcess(@);
0a1210814
8a121016

what's (only) in the binary

"Hello World !'™
push
push
push

push
call

push
call

¥

E helloworld - Motepad Lilﬂlij
Eile Edit Format View Help
MZ 1) @ g 11" .
It i Th15 rogram cannot be run in DOS mode.
&TEmZAlbZA]bZA] e] "ZA]er] cZA]ejlgfAlek] "ZATkos] gZA] bﬂ.] B
HZA] ao] "ZA] EIZ] cZA]e]] cZA]Ri cthA]
2N o ® 0 01 I} I]]]
Pliop@ 1 1 u i i 4" P @ a8
I H B I i
.text m 1 i T.rdata 41
I I @ @&.data "1 0 1 1 @
A.rsrc G @ A I @ @.reloc m 1 1 @
a B

@ L Y, 08 udAéar hFpg &0 3@ rf,0@ w5h3@
£,08 hO2 h 02 h0@ yie @ fAI£(0® _Ayrjiein vAj\he'@ &]1 30%]AE"Py0 @
9€3e uu55]u5yn4 @ %judijr <pik]aitid@ SV\??I]B @ ; Atp; Aup3oFRuadhé yi< @
E0356Fjp3a }[U]Ep[l Yé; ip3@ _Au,k5p3@ hi @ hA @ &, W..Atn(;Eijp"""*jir

er %5408 jp3@ ;fuhls @ h™ @ &,1 YYCIP3@ | 9]auiswyr@ @ 9,3@ th, 3@
er Y.At5jI5y1,3@ 7 @ < %EOr-ifu wof; Eti9]auEr.of; Et U wifia
WEUGEOEMNTE-MAEIjYQPSh @ elb{yfnn@ 930@ uLP u'up3ES] A" A
AMAFAIE® <ET ¢ BMBPQEC] ed<E@AL00E 309%0@ uuPyu" @ 9408 uyr” @
(;El'.'l yyyi00@ épp A Mz fO @ ti3AE5;< @ | @ PE ué'm T971 @ uvf,t

JE9"e @ eAcAji£S0@ yi1 @ viyyn, @ <hi@ £x3@ £]3@ jp @ Mt @ <

d3@ WERI 871 f=10@ uhfi® yix @ Yéqr f=10@ yu Jvvil @ y3IAAE g

FeyU<17(p fE@1E %<1@ XgB1E %418 %5018 %=,1@ fEx1E& fELld f[E(l@-
fCEl] 1@ fEe 1@ fE-1@ eppl@ < f01@ <ElfH1& E|]£T_l@- c.alyyCm0@ 1 1 jH1&

£D0@ Cr80@ 1 ACI<O@ [§ 0@ &% o0yyi0a :x. Uu""" @ £70@ jizkn Y]
yi @ hi @y @ f="0a uujué'u vh [Ayrd @ qu <yU< <E<
SBCsmau xmu$<@0= 1ree= 0" rt="1"rer= @™u&an JA1 hp2 y1 @ 3AAy%: @
jihe!@ &lp y5|3@ <51 @ yohEdfeyuryunyt, @ védjie¥l vfed y5)3@ yd
REAYSx3E yD%.EaEaPEaPyuucS @ yOopPeel FAREUWUaWOE |38 yuaylfx3a
CEUpyyye <EUR&] Ajiedn Yﬁ.<yU<1yuueRyyy—mA—mH]ﬁ.<yv BEl@
ME!@ Wep; £s0< ATnyDfCn; pri_sb«yv BIE #D!E wcm;.{sucu.._ht u,brn_hﬂj,?% @
IIIIIIIIIIIIII@U« <Mp Mz Forti3A]A<A<tABPE ui3d @ ',ﬁc,ﬁ]
ﬁIIIIIIIIIII<¥U<’1<E|]<H<‘.]]E[I - AISVI - QI3OWDI...GT0< Fi<HE; Ur_ <Xml; urB_fA
(;Ore3A_A[JAITIIIIIIIIII-yu<ijphi @ hoe d; P_ﬁnswi 0@
1E@3APEDdE HedCE h @ e*yyyfALATT<E- @ Ph @ éPyyyfAL.

execution = CPU + opcodes

| helloworld - Notepad = B & |

File Edit Format WView Help

MZ [) @ @ %
i ul_i'Th15 rogram cannot be run in DOos mode.

5 &TepZAlbZA]bZA]eN] "ZAler]cZA]ejlgiAlek]” ZA]I(OS]QZA]I:JZA]
HZAleo] "ZAlez]ciA]e]] cZA]RichbZA]

[, |

Un2ZN a m o I @ I 0 01 [I] I
Pl @ 1 1 I i 4" P [;
I H ifoa
.Text T I I “.rdata 41
I I @ @&.data "1 0 I I @
A.rsrc 0i @ A il @ @.reloc m I 1 1)
@ B

; ; 0@ updAéar hFpg &0 3@ ¢r%,08 y5h3@
£,08 hO& h 0@ hi0&@ ye & fAait(oe . Ayrjietn vAjhhe!e eli 30%]aE"Pyi0 @
9€3@ wissjosyid @ H]adio <plis] a¢t3@ S 8 @ ; Atr; AurddFikuaédihen 3-'1}< @
E030F jp3@ ;Aujépr Y&, jp3&® _Au,%5p3@ hI @ hA @ &;1 vv. Atn(;Eub
ér %5408 jp3@ ;futhid @ h™ @ &,1 YYCIp3& [9]aulswyi@ @ 9,,3@ 1 ..3@
&y Y.AtSjisyn,3@ i @ < %EUl-1fu wof; Eti9]auer-rf; E U wafAg
LEUESOEATD-MASIjYQPsh @ elbzymo@ 950@ uLPy u"u3E9] ArA
AMATAIE Y <ET <1< "MBPQEC] ed<EG£00@ 309%0@ uuPyu" @ 940@ uny” @
CE 00 épr A Mz fOr @ t3Aési< @ @ PE ué'm 971 @ uvf. .t

wd”l?é & @ +A<AjI£50@ y1l @ Yiyyl, @ @ <h3@ £x3@ £]3@ ;p @ Wit @ <
d3@ #eR1 e’ f=102 whio? yix @ véqn f=108 yu]y},ful @ Y3Mé,n
ékyyyayU<11(p £81E8 %<1@ %8138 R41@ %501@ %=,1@ fEpde ferle fe(la
fmjle fes 1@ fE-18 &pPl@ <E £D1@& <EI£H1@ E|]£'I'_Lt‘§l c._.é.uf,i'ji’(;[llﬂ@- 10 jH1@
fpo@ Cre0e 1 ACI0@ [j 0@ % BUyyii0@ . uu @ £70@ jrekn Y]
Vi@ hi@gy @ f='0@ uu]ue 1 vh [Aynd @ PZH U< <El<
Bcsmau® }{mu$<@u= 1“rt=r"re="1"er= @™purél 141 hm@ @ 3hAyx @
jihe'!a & ¥5|3@ <51 @ yOREAfeyuryunyT, @ védjidyy Y_feu ¥3|3@ yo
REQy5sx3@ }rO%oEaEaPEaPyuud @ yoPeer fAREUYuayOf|3@ yuaylfx3@
CElpyyyé <EUe&g Ajiednr YA<yU<IyulgRyyy=-OiA=-OYH]A<yv E!@
HE!@ weoj Asl<L ATYDfCL; prii_sd<yv B!@ ¥D!E Wep; A5[<[AT D_fqu br‘n Ady @
IIIIIIIIIIIIIIcyU<1<Mﬂ Mz TOrti3A]A<A<GASPE ui30'm TOHI'A<A]
ﬁIIIIIIIIIII<¥U<1 <E[<H<1E] - AISV] - qU30OWDT._6T1< }<HE; Ur «<Xml; drefA
(;Ore3A_A[JATTITITTTITTIT «yu<i jphr"@ ha@ d; Pfﬁuswi 0@
1Ee3APEDdE ReaCEl h @ e*yyyfAlLATT<El- & Ph @& éPyyyfAL.

»

-

ﬂ hwtiny - Notepad

=]

EIT)

Format View Help

Lo

I
kernel32.dl11
Hello world

@

user3z2.dll

MessageBoxA

m -
i Tada
ExitProcess
a

m -

opcodes

generated by compilers, tools,...
e or written by hand

executed directly by the CPU
the only code information, in a standard binary

« what 'we' read

- after disassembly

disassembly is only for humans

* no text code in the final binary

let's mess a bit now...

let's insert 'something’

1

I__asm 1__emit Exdﬁﬂ
MessageboxAl@, 'Hello World !™, "Tada !™, MB_ICONINFORMATION);

ExitProcess(@);

asm {_ emit @xd6}

,Jnnna G 33 dh
e E L L = m
MessageboxAl®, Hello World | ™, ME_ICOMINFORMATION);

geasleal sA 48 push 4ah
@easleas 68 F4 28 85 e push offset string "Tada !" |
288518838 68 FC 26 85 60 push offset string "Hello Wor.
ggaslead oA @6 push 5
@@as1e8rF FF 15 AC 28 @85 88 call dword ptr [imp Messag:

Table A-2. One-byte Opcode Map: (OOH — F7H) *

0 | 1 | 2 | 3 | 4 | 5 6 7
ADD PUSH POP
ESlB—'I- ES|54
Eb, Gb | Ev, Gv ‘ Gb, Eb ‘ Gv, Ev | AL, Ib | TAX, Iz
ADC PUSH POP
Sslm 55|54
Eb, Gb | Ev, Gv ‘ Gb, Eb ‘ Gv, Ev | AL, Ib | TAX, Iz
AND SEG=ES DAAE
e6b | Evov | ebEp | ovEv | AL | mxE (Prefix)
XOR SEG=SS AAAS
pob | Evev | obEd | euEv | ALb | mxE (Prefix)
INC™®* general register | REX®®* Prefixes
eAX eCX eDX eBX esP eBP esl eDl
REX REX.B REX X REX XB REXR REXRB REX.RX REX RXB
PUSHY% general register
rAXITS CXIrg rDX/r10 BX/r1 rSPirf2 rBPIr3 rsiiri4 DUr15
PUSHA®Y [POPA®% BOUND®* ARPL® SEG=FS SEG=GS Operand Address
PUSHAD™ | POPAD®4 Gv, Ma Ew, Gw (Prefix) {Prefix) Size Size
Movsxp®® (Prefix) (Prefix)
Gy, Ev
Jccm, Jb - Shori-displacement jump on condition
o NO | BINAEIC | NBJAEING ZEE | NZ/NE BE/INA | NBE/A
Immediate Grp 14 TEST XCHG
Eb, Ib Ev, Iz | Eb, Ibi®4 | Ev, Ib Eb, Gb | Ev, Gv Eb, Gb | Ev, Gv
NOP XCHG word, double-word or quad-word register with rAX
x?:ﬁ?lz.ers{Frﬁ(CXIrg ‘ rDX/ri0 ‘ rBX/ri1 rSPir2 rBPIr3 rslirid Dlr15
MOV MOVS/B |MOVSMWIDIQ| CMPSIB CMPS/W/D
ALOb | mxov | obAl | owmx Xb, Yb Xv, Yv Xb, Yb X, Yv
MOV immediate byte into byte register
ALRSL, I | CLRSL, Ib | DURIOL.Ib | BURTIL, Ib | AHR12L 1b | CHR13L. Ib | DHIR14L, Ib | BH/R1SL, Ib
Shift Grp 214 RETN™4 RETN (LBES;S“ éns;j’f Grp 1'% - MOV
Eb. Ib | Ev, Ib w - e - WP = Ev, Iz
Shift Grp 24 AAMSH AADIE XLAT/
¥
Eb, 1 Ev, 1 Eb, CL Ev, CL b Ib XLATE
LOOPNEEI LOOPE™ LoOP™ Jrexzed IN ogr
¥
LOOEEZ "OOJEZM b o AL Ib eAX, b Ib, AL Ib, eAX
LOCK REPNE REP/REPE HLT CMC Unary Grp 3'A
(Prefix) (Prefix) (Prefix) Eb ‘ Ev

what did we do?

* Inserting an unrecognized byte

 directly in the binary
- to be executed by the CPU
* not even documented, nor identified!

“kids, don't try this at home!”

the CPU doesn't care

e it knows
 and does its own stuff

__asm {__emit @xd&}
MessageBoxA(@, "Hello World !™, "Tada !™, MB_ICONINFORMATION);
ExitProcess(@);

~

Tada! 23

'303' Hello World !

oK

what happened ?

« D6 = S[ET]JALC
« SetAL on Carry
- AL=CF?7-1:0
e trivial
* but not documented
e unreliable, or shameful ?

AMDZQ

24594—Rev. 3.15—November 2009

AMDé4 Technology

Table A-1. One-Byte Opcodes, Low Nibble 0-7h
Nibble' o | 1] 2] 3] &] s 6 7
o ADD PUSH POP
EbGb | EvwGv | GbEb | GvBEv | AL | Xz Es® Es®
| ADC PUSH POP
EbGb | EvGv | GbEb | GuwEv | AL | mXlz ss? ss?
2 AND seq EST DAAY
EbGb | EvwGv | GbEb | GvEv | AL | mXlz
3 XOR seq 587 AAAT
EbGb | EvwGv | GbEb | GvEv | AL | Xz
4 INC®
eAX | eCcX | eDX | eBX | eSP | eBP | e8I | D
5 PUSH
rAX/r8 rCXirg rDX/r10 BXir1 rSPinz2 rBP/T3 rSliri4 D15
. PUSHAD? POPA/D? BS\L”J:H[;; é:pé; seg FS seg GS operand size ad;zss
MOVSXD*
Gv, Ed
7 Jo JNO JB JNB Jz JINZ JBE JNBE
Jb Jb Jb Jb Jb Jb Jb Jb
s Group 17 TEST XCHG
Ebb | Evlz | Eblk® | Evlb Eb.Gb | EwGv Eb.Gb | EvwGv
XCHG
o NC;‘;'P':‘L}J{SE ‘ rCX/r, tAX | IDX/r10, 1AX | BX/ri1, rAX | rSP/r2, rAX | rBPIr3, rAX | rSlirt4, rAX | rDIfr15, rAX
A MOV MOVSB |MOVSW/D/Q| CMPSB |CMPSWIDIQ
ALOb | rAX,Ov | ObAL | Owrax Yb, Xb Yy, Xv Xb, Yb Xy, Yv
MOV
B AL Ib CL.Ib DL, Ib ‘ BL. Ib AH, b CH, b DH, Ib BH, Ib
18b, b rob, Ib r10b, b r1b, Ib r2b, Ib r13b, Ip r4b, Ib risb, Ib
Group 27 RET near LEST LDS¥ Group 117
c Eblb | Ewlb w | Gz, Mp Gz, Mp 3 Ev, Iz
D Group 27 AAMT AAD? SALC? XLAT
Eb, 1 Ev, 1 Eb, CL Ev, CL
£ LOOPNE/NZ | LOOPE/Z LOOP JCXZ IN oU
Jb Jb Jb Jb AL, Ib 2aX, Ib Ib, AL | Ib, eAX
E LOCK: INT REPNE: REP: HLT CMC Group 37
ICE Bkpt AEPE: |

"dowhat | do...”

'd\undoc.exe" - WinDbqg:6.12.0002.633 X86

004045ad f1 777

004045ae d6 777

004045af f7 777

004045b0 8909090 enter 9090h, 90h
004045b4 0Of 777

004045b5 1e push ds
004045b6 84c0 test al,al
004045b8 0Of 777

004045b9 209090909090 and byte ptr [
004045bf 660£fc8 bswap eax

Copyright (C)> 2003-2011, Intel Corporation. All rights reserved.
XED version: [$Id: xed-version.c 2718 2011-10-12 21:09:59Z mjcharne $1

F1 intl
D6 salc

F7C890909090 test eax, Ox?20909090

BF1E84CHA909090980 nop dword ptr [eaxtear*B-Ox6f6f6£f701, eax
WF2090 mov eax, cpr2

660FCS8 bswap ax

the problem (1/2)

 the CPU does its stuff

« whatever we (don't) know
e if we/our tools don't know what's next, we're blind.

the problem (2/2)

no exhaustive or clean test set

» deep into malwares or packers
e scattered

- Corkami

let's start exploring x86...

Questions

Generalities
e opcodes
* registers

e relation
e initial values

Specificities

a multi-generation CPU: modern...

English Assembly

let's go! push
you win mov
sandwich call
hello retn

f*ck jmp

...Shakespeare...

thou
porpentine
enmity
hither
unkennel

aaa
xlat
verr
SmMsw
ISl

(old, but fully supported)

CE
6202
OF 9OE 1
OF@2C1
OF 9ACA
37
OF@3C1
OFAEFS
63C1
D49A
OFCY
FQ: @F C70E
CS1E
D7

27
OFC1C1
OF D00

INTO

BOUND EARX, QWORD PTR DS:[EDX]
UERR CX

LAR ERX, ECX

STR DX

HAA

LSL ERX,ECX

SFENCE

HRPL CX,RAX

HAM

BSWAP ECX

LOCK CMPXCHGS8B QWORD PTR DS:[ESI]
LDS EBX,FWORD PTR DS:[ESI]
EEET BYTE PTR DS: [EBX+AL]
xADD ECX, EAX

PREFETCH QWORD PTR DS:[ERX]

‘'over-disassembling’

o CD XX:int XX

* deprecated behaviors:
e int20h = VXD, int 35-39 = FPU

EBQ2 o

CD20EBQ49090 vxdcall

CD20EBR49090 wvxdcall Do

CQ?B9B8®CBB® vxd jmp EB
CD

CD 35 DO fnop; (emulator call)

CO EB 02 shr bl, 2 -

CD 20 EB B84 90 90 UxDCall

CD 20 EB B84 90 90 UxDCall 90

CD 20 90 80 CO 08 UxDJmp 2

35 int

_B:
CA rol
82 jmp

35h

al, 1
short 1

2 8h

...next generation

tweet crc32
poke aesenc
google pcmpistrm

pwn vimsubadd132ps

Fused Multiply-Alternating Subtract/Add
of Packed Single-Precision Floating-Point Values

apps movbe

only in netbooks!

all opcodes PoC

int3
int -
smi

aam
aam =55
.1
vaeskeygenassist xmmd, xmmd, E
..]
vinmaddpd ymmA, ymm@, ymmB, ymme
.1
VIA Padlock
rep xsha2tbeo
rep montmul

:CC
:cd B3
-1 (384)

;d48a
sd4xx : undocumented

;c4e379dfcBaa

;c4e37d7%caa8

;f38facdB calculate 5HAZ256 as specified by FIPS 188-2
;T38fa6cB montgomery multiplier

registers

« Complex relations

« FPU changes FST, STx, Mmx (STO overlaps MM7)
- also changes CRO (under XP)

e |nitial values

« AX =<0S generation>
- OS =(EAX ==0) ? XP : newer
 GS = <number of bits>
bits = (GS == 0) ? 32 : 64

XP W7

Flags

TLS

eax
ecx
edx
ebx

EntryPoint

eax
ecx
edx

fully ctrl-ed
controlled
fixed

[...]

EntryPoint: RN B I I P C
Ichg esp, [Fake_egp] Inltla Va ueS O
pushf
pusha
xchg esp, [fake esp]

[...]
mov eax, [flags]
cmp eax, Z46F

[...]
mov eax, [eax]
cmp eax, Y ; good XP value

[...]
cmp eax, /000BEBEh ; good >=Vista value

[...]

TLS:

[...]
cmp ecx, 11h ; good >=Vista value

[...]
cmp ecx, TLSSIZE ; good XP wvalue

[...]

range

SMSsSw

 CRO access, from user-mode

e 286 opcode
* higher word of reg32 'undefined'
e under XP

 influenced by FPU
e eventually reverts

% smsw trick: OK

>smsw 1D0smsw.txt

>type smsw.txt
»* smsw trick: fail

GS

 unused on Windows 32b
e on64b: FS, GS = TEB32, TEB64
e reset on thread switch

* eventually reset
- debugger stepping
- wait
- timings

nop

* nop is xchg *ax, *ax
* but xchg *ax, *ax can do something, in 64b !

87 c0: xchg eax, eax
01 23 45 67 => 00 00 00 00 01 23 45 67

e hint NOP 0r1E84C090909090 nop dword ptr [eax+eax*8-0x6f6£f6£70], eax

 partially undocumented, actually Of 18-1f
e can trigger exception

mov

* documented, but sometimes tricky

 mov [crO], eax mov cr0, eax
- mod/RM is ignored

e movsxd eax, ecx moyVv eax, ecx
- no REX prefix

* MOV eax, CS movzx eax,Cs
- 'undefined' upper word

non standard CRO access

smsw
pus h

no
#UD (mod)

push eax
nop

mov eax,cr
push eax

nop

pus h :
call DbgPrint

otions Computer Help

e A RE T 9F | M4

Debug Print
0000 * CRO: 8001003B (normal) 8001003B (invalid modRM) 8001003B ('un

bswap

rax
12 34 56 78 90 ab cd ef => ef cd ab 90 78 56 34 12

eax
01 23 45 67 => 00 00 00 00 67 45 23 01

aX
01 23=> 0000

00400££8 0000 add byte ptr [rax].al

00400ffa 0000 add byte ptr [rax].al rax | 89abcdef
00400ffc 0000 add byte ptr [rax].al rip 40100c
00400ffe 0000 add byte ptr [rax]. al rCX 7f£££000
00401000 48b8efcdab8967452301 mov rax,123456789ABCDEF rdx 401000
0040100a 87c0 Echg eax, eax

0040100c 90 NnoL rbx 0

H sas> o

OF19C2 hint nop edx

Access violation when reading [00402000] - use Shift+F 7/F8/F 3 to

start:

. 00401014
. 00401016:

next:

. 0040101D:

A040100E
{start>

PP401014
90401016
9401017

03401023
08401026
90401028
¥a40102E
¥040102F

FAra Arad rannr

<next>
99491010

VST Y

90

68 181084000
66:C3

CC

CcC

68 43104000
FF15 1811400
83C4 04

6A 00

FF15 1011400
CC

CC

lalr e T NS Y v BV

ALY =l p 7

NOP

PUSH <pushret.next>

RETN

INT3

INT3

PUSH pushret.d0401043
CALL DWORD PTR DS:[401118]
ADD ESP, 4

PUSH ©

CALL DWORD PTR DS:[401119]
INT3

INT3

[aTednh A J n] (R T P . -y

DEMO

RET used as a jump to next

Fopmat = "Tada'@”
printf

%* push/ret test: "“"fail" ¢

...and so on...

 much more @ http://x86.corkami.com
e also graphs, cheat sheet...

* too much theory for now...

http://x86.corkami.com/
file:///D:/_nc10/sources/corkami/trunk/builds/

Corkami Standard Test

CoST

* http://cost.corkami.com
» testing opcodes
* In a hardened PE

e available in easy mode

http://cost.corkami.com/
file:///D:/_nc10/sources/corkami/trunk/builds/

more than 150 tests

classic, rare mov

cmp

jumps (JMP to IP, IRET, ...) JZ
undocumented (IceBP, SetALc...)
cpu-specific (MOVBE, POPCNT,...)
os-dependant, anti-VM/debugs

exceptions triggers, interrupts, OS bugs,...

CoST's internals

Cos5T - Corkami Standard Test BETA 2011,/09/xX
Ange Albertini, BSD Licence, 2009-2011 - http://

F b Y ol W ek e
C=C05T. exe

ftrick] the next call’s operand is zeroed by the loader
CoST - Corcami Standard Test BETA 2011./09,2X
Ange Alberini, BSD Licence, 2009-2011 - http://cordcami.com

2
P 3
Info: windows 7 found 4
starting: '||1rrp: opcodes. ..
starting: classic opcodes... D
starting: rare opcodes... g
starting: undocumented n:np-::n_m} 7
starting: cpu-specific opcoc : _
Info: -:gu:I::-FJI:S-:anﬂ'ir1-:a:r11:-:a'lru| 8 ftrick] allocating buffer [00-]
Info[cpu]: MOVEE (Atom only) not supported 3 testing: NULL buffer

511::1:11:1 Hg: umh:j-:un ;r]rﬁ;._l encoc }'mg S... 10 checking 05 version

starting: os-depenc opcodes. .. .

Starti r1g' ”"L Pe ncodes peac 11 Info: Windows 7 found

starting: opcode- [J"_: ed anti-debuggers. .. 12 [rick] calling Main via my own export
starting: code sed Ge 5 Starting: jumps opcodes. ..
STarting: opcode-past ption triggers... Testing: RETN word

starting: 64 bits A .

starting: registers

frick] TLS teminating by unhandled exception (EP is executed)

e5..
a5

.completed!

CoST.exe +FRQ) ——————— aj2 PE .7EFDBZ22A|Hiew #.15 {E}EEH
4 _Main: d,. [BCAFEBABE]. "'Etal'-tlng- Jjumps opcodes...
- 7EFDBA22A = Jumps —1
- 7EFDBZ2F:

- 7EFDA238: d,. [BCAFEBABE]. ;'Starting: classic opcodes...’
- 7EFDA23A: classics —1

. D a49: eax,

. /EFD2545: ebx,

. /EFD254A: cs

. /EFD254B: h end --1
. /EFD2550: h '3’

. /EFD2552: push_eip --1
oush_eip: ax, bx

. 7JEFD2559: eax

. /EFD255A:

.75FD255C:

end:

. /EFD2563:

. /EFD2565:

ext:

00401001 90
oo401002 90
oo401003 90
00401004 90
00401005 e852104000
0040100=s ££15£3104000
00401010 83c404

00401013 beYede?0£5

nop
nop
nop
yolm)u
= of f=zet 1mage0000
call dword ptr [image
add e=p, 4
o gax, UF570DE7Ch

disassemnbly possible
0040102a 63d8 movsed ebx,eax

0040102c 4801c0
0040102f cb

00401030 8lfbfcacelea
00401036 7515

add rax, rax
retf

CmMp ebx, OEA
jne 1mage00

Aedch
7692c620
t570d67c

Reg

rax
rcx
rdx

Value

eaelacfc
7692c620
8e3c8

WinDbg 6.

Hiew 8.15

CoST vs WinDbg & Hiew

ebp
edx

byte ptr [eax]
inage/efd0000+

12.0002.633

xx%x PRKKUK: [OdUlEe lOad COmplLEted Dut SYmbolsS ccC
image/efd0000:

7e£d0000 4d dec

7efd0001 5a pop

7e£d0002 ce into

7¢£d0003 Of 77?7

7e£d0004 1838 sbb

7e£d0006 =9db010000 Jmp

7edeDDb 0d436£5354 or

L P N T T B R o Y

eax, 54536F43h

. 7EF
the dra
. 7EFDBB

on:
&: E91501 imp

a hardened PE

- Corkaml Stand
ard Test BETA 20
11/09/XX’8H DP
>Ange Albertini

BSD Licence, 20
Q9-2011 - http:/
/Corkaml com ~*'i

« >~ HEk

iT$1iéq f U8lF+u
.UxOHd || rLu/ZE i @4PQ
Y P SP’*~iT$14

aus °¢Hul(§ﬁc
Esm8ieoi¢ 6
TTr@N+J" 2°R
B»{-"—Fo X4 79
ja 1iQ nCil%
v APS5IM B 21V
Y he2W&ii=’=(
xﬂth C#IU
214 3igT1éd
alfy; + #ﬁl——
a)Fe]HA 311
8eRile® 4]St
1 OUR jTﬁ
oo 2yY_5T
0%;16vell:_T8®J 5L
2~%e» | #D’? 2™

ZH’ 2™

PE 'footer

CoST vs IDA

/] [waring =)

The imports segment seems to be destroyed. This MAY mean that
& I_l the file was packed or otherwise modified in order to make it
more difficult to analyze, If you want to see the imports
segment in the original form, please reload it with the
] | ‘make imports section’ checkbox cleared.

oK Help |

b

[] Den't display this message again
ﬁ Please confirm ﬁ -

bTree error: memory allocation error (for struct PAGE)

es

] [rﬁ Warning Iﬁw

Mo]

I_ Unknown fiup type 0:7000 is ignored
- X

[“ Please confirm @1

Entry point 0x7EFDO000 is not loaded into the database.Do you want to load the [Don't display this message again
missing data?

Yes] [Mo

a bit more of PE...

PE on Corkami

still in progress
more than 120 PoCs

e covering many aspects
e good enough to break <you name it>

'summary' page http://pe.corkami.com
printable graphs

http://pe.corkami.com/
file:///D:/_nc10/sources/corkami/trunk/builds/

VO | Hiew 8.15 (cJ)SEN

virtual section table vs Hiew

VIRTSE™~1.EXE

o L) L)
1
ma: = []
H H
H
- SEEEEOEE
N TN T T TN By e
5 (S5 G 5 () HEGEGEMNGEIR S5 G SIS
(5 ()5 G 59 () HEGEGERGEIE S) G (I
5 (S5 G 5 () &= &) GIEIG) S5 G SIS
(5 (505 () 55 (5] & & I S5 G ()05
[I N EREE
5 (S5 G 5 () & &) S5 G SIS
SISIE I SISIEIEE)
SIEIEEIEIE) SIS ()
SIS SIS S5 (5
SIEIEEIEIE) SIS ()
(5 ()5 G 59 () m n o) (5 55 (5]
n
alalalalala] &) (1] alalalo
alalalalala]l &) L S5 G EIND
=) o
=ISIEIE) =) [o SIS E
alalalalalal &) (1T} m S G EIND
= o o
SIEIEE MO h =M (1] SIS
(=) (S5 (S (5] +~ M Cw — SIEILL G
m 0o JcC A
SIEIEE G O mL.c SIS ()
(5 (505 () (55 (5] HLUOCLL N L CI GG
n— —=00C C O
SIS [~ m-~ n EEH S nELC N SIGIGIIS]
SIHEIHSILNGENS) —ye-Cnl e HCTU4C SEI& G
1] QCEEY 0Ly -

5 ()05 5] LCCH[Q LE U~ 00 5 (S5
SRR ENENE] JOAp MEENM I >> 0O (SIS
-+ ML w MMMy
SIS O] MunnUODME EO YO U X > OGS0
SIS =) COQUOM—A-~N O— 0L Ll SHEHSIND

(v R) o TS i S T TR B T T

SIHSIHRIENSHE) HXMUMA M CNLU>>0C SHSEISO0
) I OI I OO O = NOO0K OO =1L SIS
SIEIEEIEIE) SIS ()
SISIE I SIS R
SIS NG G G CI) — GG) (0 G I T G =L I 00 SIEE)
HIHIEYT HEEEEEEEEEREEEEE Y N EEEIEEE G
BRI EEREEEEHEEEEEEEEMNEEHEEE DR E G
R EENEEEEEEEMEEEEE RIS DN S SIS
FIERIEEEEEEEEREEEEHEEREREEEEGEEEEEEEEIE
) .uﬁjm;ﬁ. OO & » Q=00 0
alalalalalalalalalalalalalhalals
WrarardrararararaEiﬁiiﬁﬁiﬁﬁ_ﬂ_ﬁ_ﬁ_ﬁ_ﬂ_ﬁ_ﬁ_ﬁ_ﬁ_ﬁ_ﬂ_ﬁ_ﬁ_ﬁ
S GEIERIEEEEREGEEEHEEEEEEEEEEEEGREE R E GG
HIHIEGHEEREEEHGEEGEEEHEEEEGEEEEGEEE R GG
HIHIEGHEEREEEHGEEGEEEHEEEEGEEEEGEEE R GG
alnnlalalaialo

Folded header

Export 88660001 10K9988

Weird export names

» exports = <anything non null>, 0

@@4@1@@2
00401000Q:
00401200Q:
00401000:

XEEEXEXEEEXEXEXXEEEA XX EEEXX XX XXX X XXX XXKX

¥ Insert subliminal message here %
2333333 I I T T I T T I Iy

10401000: 8BFF
00401018: 202A

+ 3+ 343333

65535 sections vs OllyDbg

Low memory! i B

S

Unable to allocate -531677184. bytes of memory

| Don't display this message in the future

a last one...

TLS AddressOfindex is overwritten on loading

Imports are parsed until Name is O &+ TLS Aol on imports

D>ver

Microsoft Windows HP [U

under XP, overwritten after imports D)t1s a0i0SDET exe

« imports are fully parsed

EX demo Aol 05 Detection

under W7, before Cover
Microsoft Hindows [Version 6.1.76
e truncated Ot 550 L9SDET exe

same PE, loaded differently

Conclusion (1/2)

» x86 and PE are far from perfectly documented

official docs [1 FAIL

Conclusion (2/2)

1.visit Corkami
2.download the PoCs

* read the doc / source
3.fix the bugs ;)
e or answer my bug reports ?#3!

Acknowledgments

 Peter Ferrie
e |vanlefOu

Adam Btaszczyk, BeatriX, Bruce Dang, Candid Wuest, Cathal Mullaney, Czerno, Daniel Reynaud, Elias
Bachaalany, Ero Carrera, Eugeny Suslikov, Georg Wicherski, Gil Dabah, Guillaume Delugré, Gunther, Igor
Skochinsky, lIfak Guilfanov, IvanlefOu, Jean-Baptiste Bédrune, Jim Leonard, Jon Larimer, Joshua J. Drake,

Markus Hinderhofer, Mateusz Jurczyk, Matthieu Bonetti, Moritz Kroll, Oleh Yuschuk, Renaud Tabary, Rewolf,
Sebastian Biallas, StalkR, Yoann Guillot,...

Questions?

Thank YOU!

angedr 1

http://twitter.com/ange4771
file:///D:/_nc10/sources/corkami/trunk/builds/

Bonus (R =
I Unknown fixup type 0:6000 is ignored
. oK
* Mips relocs (on relocs) . —
Don't display this message again
* ImageBase reloc S —
s | K| E» A BB T 9F
. ¢ [Ti | Debug Print
* multi-subsystem PE 50 D0OR0IT x multseveren FE (driver)
. . O WINDOWS' system32
¢ regS On TLS & DIIMaIn C:smultiss>multiss_con.exe
= multisystem PE <(consolel
Czwmultiss>multiss_gui.exe
IE:'\multiss'\multiss_dw.s_l,ls : E
|| RBemzter I—|-—| Bun I—- 11" Fintinns I
rf,“ Warning Iéj1

l'x

0: The instruction at 0w referenced memory at 0:). The memery could not be read -» 00000000 {exc.code 0000005, tid 1188)

75

28" December 2011
Ange Albertini

Welcome!

I'm Ange Albertini, and | will talk about x86 and PE

N
before you decide to read further... @W@%@

Contents of this slide deck:
1. Introduction

1. introduce Corkami, my reverse engineering site
2. explain (in easy terms)

1. why correct disassembly is important for analysis
2. why undocumented opcodes are a dead end
2. Main part

1. a few examples of undocumented opcodes and CPU weirdness
2. theory-only sucks, so | created CoST for practicing and testing.
3. CoST also tests PE, but it's not enough by itself

4. So | documented PE separately, and give some examples.

this extra slide to let you decide if you really want to
read further ;)

1.1 studied ASM and PE, from scratch

2.1 failed all tools I tried: IDA, OllyDbg, Hiew, pefile,
WinDbg, HT, CFF Explorer...

3.here are a few of my findings

Improved, but similar

Ed350 = (&,

This is an improved version of my presentation at
Hashdays.
| reworked it, but most of the content is still the same.

Author

e Corkami

* reverse engineering

 technical, really free

 MANY handmade and focused PoCs
- nightly builds
- summary wiki pages

 but... only a hobby!

“there's a PoC for that”

and if there's none yet, there will be soon ;)

| created Corkami, a website about reverse engineering.

it's technical, and free: open-source, relying on free tools,
free for commercial use, no ads, no log-in.

| focus on creating a LOT of small focused PoCs. they're
handmade so really no extra stuff. each of them is probably
meaningless, but altogether, they're a useful toolbox to test

and learn.
then | write a summary page. but | put more work in PoCs
than in the pages.

the important is: for each feature | study, there's a PoC
available

but it's only a hobby, so it's quite messy, and not as good as
I'd like it to be.

Boo Tof O oo® SN
Looiu. JHatio S0 cEabelt
Ar THET 0D _EMER. s, b T
H - LZAlE bl HondEe. o Jbop, b =VE I [P |
An THET 0D _RMRL kT, e FLIRE .
SR T T A "
ol

ul Haliz U2 cEabel' o oviuchies, zsodoo olye

Dowade camh oaue. Lo puLugIpe Lo
R .h :: I:I%{{.""I L B E B e e
3 ar i
daz ula Bt FT N | b R = 11 11 i
ek I 3HRLEHER . Rin T
Ay = hEl" Hirh ¥H rignRRIER 1‘Ié' I B 1 1

Loatu. JHalizn JfUloMes HonlERe

(L Suani | - - A - -
——- Ak, 1 ETRN [T ik fal' L | el R AL BN
Lo, sl puckd DET, Lz) L. -~
THRTEETET 0, ersieno sk, RT3 E=ryFn" A
~ELM,] L1 LT T
12 a1l - [_d4-p__ne
Ny ¢
e beme_mate ot ngf AL THEG ST THE_IFCOEE0T A e i ey
-sbu- o Pl T, Ul Habs o LoMan HeoalEee.suose_owes, ol
- <+ dremn T
wrdrl b

L R [{aua Al latharId
(1A 1 1n Uar1d ¥ ek Ditiny
i THES = nHE nnduarzal tdng I'N

so, whether it's

«a non PE exe with an inverted ZM signature, in 16Dbits
asm.

«a complete 'correct' PDF with text (that's the full PDF
btw), typed in notepad

«a working java class, with opcodes generated
manually

«a tiny PE, with imports and code in the middle of the
header

you can see that all of them only have the necessary
elements.

the story behind this presentation

and here is the story behind this presentation

first, a small flashback

g

years ago, | was young and innocent, believing that
CPU would be perfect, because they're made of
transistor, not software.

and | thought | knew assembly.

BF20 - Unknown command
90 NOP
OF18 - Unknown command
3890 |CHMP

Command "MakeCode" failed

1% no
BF2090 #UD (mod)

QF1838 #UD
90

then | encountered my first undocumented opcodes.
and shortly after, my first sectionless PE.

| was shocked, but | thought | was still young...

So | decided to go back to the basics, studying x86
and PE from scratch.

CORKAMI

x86

: PDF.JAVA ...

and writing my findings on the way, on Corkami.

CORKAMI

: PDF.JAVA ...

This talk is only a subset of what's available on the
site, even on these topics.

“Achievement unlocked”

Low memory! S| ® Error =

.'8’. bTree error: memaory allocation error (for struct PAGE)

.* Unable to allacate -531677184. butes of memary

[Don't dizplay thiz meszage in e future

0% ||r L HI}’IIT-'Y

7EFD@@GZ e int
FD@@S& E91501 jmp _Ent {PAGE_FAULT_IN_NONPAGED_AREA

........

(Authors notified, and most bugs already fixed)

but, if | was just a guy learning ASM and PE, | probably
wouldn't be presenting here.

So, here is why I'm here :)

Most of these bugs were already reported and fixed.

Agenda

I. why does it matter?

|. assembly
Il. undocumented assembly

II.x86 oddities
(technical stuff starts now)

[11.CoST
IV.a bit more of PE

so, first, I'll start slowly, trying to introduce assembly to
beginners, and make them understand the problem
of undocumented opcodes.

then, it will get more technical:
I'll cover a few assembly tricks, including some found
in malware.

then I'll introduce my opcode tester, CoST.

and I'll also present my last project which deals with
the PE format.

assembly, in 8 slides

So, let's start and try to make everybody understand
the problem of undocumented opcodes.

so first, introduce opcodes themselves

from C to binary

Loanb BI'EMEAY LRAfRUAngHOHSLEHLE Dona Lonze,
H_HalBHLE Do ns Lo,
IS logmlii-n,
L Wom e

Freasop-bohie, "Fuello Wl P T - PE LI LOH
| E AN LS RSP

S0, we create a simple program in a language, such as
C.

Here, in Visual Studio, Microsoft standard development
environment.

this program shows a simple message box on screen,
then terminates.

an executable is generated, and indeed does what we
expected.

inside the binary

what the Visual Studio compiler did from our C code is
actually generate sequences of assembly code
instruction that will generate the wanted actions.

order

so, the C code is turned into assembly. which is itself
encoded in the binary as opcodes.

our code, 'translated'

[(P | U T R
——— ol sl
(TR | " e
l -
n
u Sunn - = —
T L o 1 . | = " =,
S - ey — —
AR EpE_B [] []
_——
AR EpE B n LE] | | m _— II u N_E
L TS .
n m ; IIIIII :‘“““““"“““““"“"“"E ! EpaE
| |
LT T ——y
agr-"r"mn
e 1. LI ey

Here, you can see calls to MessageBox, then
ExitProcess (the names are self-explaining), with the
parameters above.

these assembly operations are stored in opcodes
directly in the binary, as visible on the left.

opcodes = assembly

now you know that this is what is in the file itself.
this is how it's read by 'us' (reverse engineers,
malware analysts, exploit developers...).

the CPU itself only reads the hex.

as you can see, there is a relation:

68 - in hex - is used to push offsets

calls starts with FF 15...

and you can see the used addresses here (read them
backward).

so, you see the first byte determine the actual opcode.
and depending on each opcode, the length is variable.

what's (only) in the binary

- ems

" -
T -

l.:.._l d 1 r...1..llI‘ -

"""
g "g g o
ng um g e . - -~
lllll L
bl L] | !

(T J— -|'I:-|7'|'T.-'.-I:_:.'F.- . L
----- LI] --J.:Hlll.- L. H- 'I'-|. -
----- W RE R IR =-.--: _.- -Tl-:-'.__.-'

T o [I- T o
L.'- mes == g] 3-.1-: ‘..... '-l
B A R U T, -
h:_-‘ .-. .! I.-:. -.-.
.—.l--I :-.-.-'.r..ll.- " .'l_r

This is what is actually in the file on the hard disk (the
'hex’).

If you'd accidentally open the file in, say notepad - it
doesn't really make sense, but at least you have that
on your machine - you could find it here (remember,
it's hex).

Note that it's actually a very tiny part of the whole file
(<30bytes out of 56000).

execution = CPU + opcodes

—
m " -
= o E . - -
n Ill.llll ‘- "E mER - = LN N
| e e - - -
L] — 0 Iratiny hukops = —IH-.
- " e e W e 1A lar=ab Sass s
vZ L L ouserEz.odll 13
n X] TAiA
.ill-l - u n .1 I 1 i LxiTiIrracens
1 i
= :';-ﬂ'd et w ! korro 32600 YOSSAQCEONA
J.:H." . -~ "y . e
"l - . R TV T i I 2
e i T i Con i
VIR A ST, R
LTI T -
n n - L | -.
i RN T, -
h: - .I- III.-: = -_—
— e e NN
-l n n | L ll_l.

What's important is that in the end, anything running on
your machine is about the CPU executing opcode,
no matter what.

the compiled file is full of 'unneeded' stuff. while you
can make a much smaller file with exactly the same
functionality (that's the whole file), and even though
they're very different, the same opcodes are present
again.

opcodes

» generated by compilers, tools,...
 or written by hand
« executed directly by the CPU
« the only code information, in a standard binary

* what 'we' read
- after disassembly

» disassembly is only for humans
* no text code in the final binary

so, the compiler translates our C to a series of
assembly operations, which is itself encoded in
opcodes.

the resulting executable only contains the opcodes,
which are directly understood and executed by the
CPU. If no error happens, what is here directly
affects the behavior of the program, there is no 'man
in the middle' from the OS.

so our C code will just eventually lead the CPU to read
and execute
6A 40 68 F4 20 40 00 68 FC 20...

if, by any chance, there is some opcodes that we are
not aware of, or doesn't do what we expect, the CPU
doesn't care, it just knows what to do.

let's mess a bit now...

so now, let's interfere with the compiling process

let's insert 'something'

{

__asm { emit @xd6
Messagebo N elle World !™, "Tada !™, MB_ICONINFORMATION);

ExitProcess(@8);

¥

B _TCTHTHT NS MAT T 5
“hi
rfra — “me N
tra = -
I r i r dnrry

let's add a command that will force a specific byte in
the opcodes.

this result is not known to visual studio, which only
shows ?7?

e
" H .:.!II [| =
=
-
r

[] - - L
-
- = N .
[B} - e . [-
[] -
[8] []
L] mm [] [] []
- - [] -
[] ...—\
1 B el -
[]]
...- " Emmm -
e | L L

indeed, if we check Intel official documentation, there
is nothing to see here...

what did we do?

* Inserting an unrecognized byte

« directly in the binary
- to be executed by the CPU
* not even documented, nor identified!

“kids, don't try this at home!”

so, we forced something that is not recognized by the
most expensive Microsoft compiler to execute, which
Is not even in Intel's books.

We should only expect a crash, right ?

the CPU doesn't care

e it knows
* and does its own stuff

wam [omil Wmalx]
Howawarswssl, "Holly woeld 1%, 7 wcw 17, HZ CLOH_HEURHEI WY
Exibl'twocan¥l;

but the CPU doesn't care about what YOU (or VS) know, and it just
executes that mysterious D6 just fine (apparently)

it doesn't look like a big problem, but if like Microsoft, you base your
judgment on Intel's documentation, you just don't know what
happens next. No automated analysis, proactive detection, etc...
and you need to understand that undocumented opcode.

You can't even sKip it:

you don't know if it will jump, do nothing, trigger an exception...

and because of variable instruction length, you can't even tell what
would be the next instruction, so you can't guess easily backward
from the next instruction.

what happened ?

. D6 = S[ETIALC e e - —i
« SetAL on Carry i

- AL=CF?-1:0 :
e trivial

« but not documented AR) Lol
« unreliable, or shameful ? :

so what did we do in reality ?
D6 will be decoded as SETALC, which is quite simple.

It doesn't interfere with the execution of this example (it
could have, of course).

surprisingly, it's not documented by Intel, but it's
documented by AMD.

anyone knows why ?
I'd be curious to know.

“do what | do...”

nrleo =y Wl bk 12 02 BTS ¥ b

)a0aSad C1 R

ihl-alihyy= 40 e

0falaba. .7 e

izl =:EniEnicnl &gy b ik
0fa0atla 0. e

ihil-alhikFnL 1= ru=h i=r
0)a0a5Lle Fa20 emiio al.al
il - e

O0a0a5L3 20a0a0agagan and Lyoc oz
il Gl =il Frys- any

Copyright (C> 2003-2011, Intel Corporation. All rights reserved.
RED version: [51d: xed—version.c 2718 2011-10-12 21:09:59Z mjcharne $1

intl
salc
F7CR9a7@9a%a test eax, @x787874894
UF1E84CA78987898 nop dword pty [eaxteax=8-—Ox6f6f6f78]1, eax
dr2aJa mov eax, cp?
66AFCH hswuap ax

the funny thing is, even though Intel docs are full of
holes, Intel free tools are fully aware of what to
expect...

Sadly, Microsoft WinDbg decided to follow the official
docs, which makes it a very bad tool against
malware, which commonly use undocumented tricks.

the problem (1/2)

» the CPU does its stuff

» whatever we (don't) know
 if we/our tools don't know what's next, we're blind.

So, you now know that the CPU knows things that the
Intel documentations omits.

if we or our tools are not able to tell what the CPU will
do, we're just blind.

the problem (2/2)

no exhaustive or clean test set

* deep into malwares or packers
 scattered

- Corkami

the extra problem is that each of this oddities are
usually scattered in various files, deep under
obfuscations or in malicious behavior. no 'ready to
use' toolbox.

that's the hole | wanted to fill.

let's start exploring x86...

Now, let's start the real stuff

Questions

Generalities
* opcodes
* reqisters

e relation
« jnitial values

Specificities

before focusing on particular opcodes,

my first questions was:

what are actually all the supported opcodes ?

then, actually how many registers are there ?

before anything happen, do they have any particular
value ?

a multi-generation CPU: modern...

English Assembly

let's go! push
you win mov
sandwich call
hello retn
f*ck jmp

that's the problem.

like English language, assembly uses mainly always
the same 'standard’ opcodes.

which means, what everybody is used to hear or read:

Here, 'standard language'. What all generations
understand.

most people would understand...

...Shakespeare...

thou aaa
porpentine xlat
enmity verr
hither smsw
unkennel Isl

but Intel CPU are from the 70's and still backward
compatible...

here is an example of Shakespeare English and old
Xx86 mnemonics

unknown to most people.
yet still fully working on a modern CPU.

(old, but fully supported)

Uk LM I _ .
LaHE [OLRD CAx - ROl TTR Lo [OOC
AFANF | LFRR 1

aF@zC L LAR EAX, ECHK

WEUkT Sk L

S FHH

GQFG T | |51 FALN,FRY

aFAEF & =FEIICE

B | LHEL Uity I i

DdaH A

GIFT. 5 FbaF Fru

FB:BFCTBE |LOCK CHPXCHSEE GQUWIRD FTA OS: IES1]
LLIE LU% R FWLHL B Ik L LESL.
o= SLAT COFTC TR [[COR 1AL
AT ran

@FCLCL ¥ADD ECH. EF

WUl FHEFEICH ubJRL FIH LSe kI

so here is a small executable where | only use
uncommon opcodes. some are not really doing
anything, some are actually doing something
meaningful.

| expect that most of us are not even used to see these
opcodes, yet they're fully supported by all CPUs.

'over-disassembling'

« CD XX:int XX

» deprecated behaviors:
 int 20h = VXD, int 35-39 = FPU

. L0 %5 ink
imps

BA49090 vxdecall q:
BR49090 vxdcall OH EH Pl
80CPR20 wvxdjmp EE 42 1np
LD 2d ink
CDh 35 Da #nap: {(emulatar call) .
ca EB @2 shr bl, 2 EE U Tmp

GCD 28 EB a4 94 94 uUxDCall ;
GCD 28 EB a4 94 94 uUxDCall EE nep
IIIIII
CD 28 98 88 Ccad ad UxDJmp CO 54 ink

cEh

dal, 1

shorre 1
Edh

chpo't E

cdh

Another funny fact is that some specific opcodes
(interrupt) used to be for various functionality, which

made IDA and Hiew over-interpret them.

in IDA, you can disable the option which is by default.

...next generation

tweet crc32

poke aesenc

google pcmpistrm

pwn vfmsubangggp S
apps movbe o

only in netbooks!

new generation : English and opcodes.
probably unknown to most people

single opcodes for CRC, AES, string masking...
MOVBE = rejected offspring

netbook only. absent from i7
=> so much for backward compatibility

all opcodes PoC

Hi

1.8 H¥ I+

all o o
|

L. o e d

i [Tk IR
.

EE I R s HE LR R B L

o v, w2, om0 K e IT T

17 Tt =
b BERET I fl mTILU M ONECUE g VAT W = oad
- el P 5 wSd TTICTRT WO oAl oo

| made a 'non working' PoC with all opcodes encoded,
and various tricky situation.

very useful to quickly test the abilities of a
disassembler.

registers

e Complex relations

» FPU changes FST, STx, Mmx (STO overlaps MM7)
- also changes CRO (under XP)

 |nitial values

* AX = <0S generation>
- 0S = (EAX ==0) ? XP : newer
* GS = <number of bits>
bits = (GS == 0) ? 32 : 64

the basics of assembly are the registers...

registers are overlapping.
unlike many documentations, STO <> MM7

before any operation, registers have the value
assigned to themselves by the OS.

| collected these values

under windows, specific values it's not CPU specific,
but the initial values of the register on process start-
up, under windows, gives a few hint that are used by
malwares.

eax can immediately tell if you're on an older OS or
not.

While GS can tell you if the machine is 64b or not,
even in a 32b process.

1 r&l

| =

., Initial values PoC

M. tara_hatl

LRl
|
ra T .o

T T FY R

rEpcli=icla e m

#.o. TZFIZZ 0 noan 2T walva

Flags
TLS
eax
ecx
edx
ebx

EntryPoint

eax
ecx
edx fully ctri-ed

controlled
fixed

| created a PoC that just gets all registers from EP and
TLS, and checks the validity of result.

easy check see if a malware/tool is interfering with the
loading process.

SMSw

 CRO access, from user-mode
» 286 opcode
 higher word of reg32 'undefined’

* under XP

* influenced by FPU
» eventually reverts

smsw is an old 286-era mnemonic (before protected
mode was 'complete’): it allows usermode access to
crO.

the higher word of a reg32 target is 'undefined’, yet
always modified (and same as cr0)

under XP, right after an FPU operation, the returned
value is modified [bits 1 and 3, called MP (Monitor
Coprocessor) and TS (Task switched)], but
eventually reverted after some time.

too tricky ? redirection fails. any idea why ?

rEmsw
®* zmsw trick: OK

»amsw 1rsmsw.txt

*eype smsuw.twt
® zmzw trick: fail

demo of smsw:
sundocumented behavior
fpu relation (xp)
sredirection weirdness

GS

» unused on Windows 32b
 on 64b: FS, GS = TEB32, TEB64
* reset on thread switch

» eventually reset

- debugger stepping
- wait
- timings

the GS trick is similar.
*on 32b of windows, GS is reset on thread switch.

*on 64b windows, it's already used by the OS (value
non null at start)

le wait long enough, it's null, whatever the value
before.

if you just step manually, instantly lost.
after some time, but not a too short time, it's reset

demo of all GS features

nop

* nop is xchg *ax, *ax

* but xchg *ax, *ax can do something, in 64b !
87 c0: xchg eax, eax
. 01 23 45 67 => 00 00 00 00 01 23 45 67

e hint NOP 0r1E84C090909090 nop dword ptr [eax+eax*8-0x6£6£6£70], eax

 partially undocumented, actually Of 18-1f
» can trigger exception

xchg eax, eax is 90, which originally did nothing.

(xchg eax, ecx is 91)

thus 90 became nop

but 87 c0 is an xchg eax, eax that is not a nop and
does something in 64b, as it resets the upper dword.

hint nop gives hint of what to access next. it does
nothing, but it's multi-byte.

first, it's not completely documented by intel

and, being a multi-byte opcode, if it overlaps an invalid
page, it can trigger an exception!

mov

« documented, but sometimes tricky

* mov [cr0], eax mov cr0, eax
- mod/RM is ignored

* movsxd eax, eCXx MoV eax, ecx
- no REX prefix

* mov eax, CcS movzx eax,cs
- 'undefined' upper word

Mov is documented, but has a few quirks.

* to/from control and debug registers, memory
operands are not allowed. but not rejected !

*in 64b, with no REX prefix, movsxd can actually work
to and from a 32b register, which is against the logic
of 'sign extending'

* on the contrary, mov from a selector actually affects a
complete 32b register. the upper word is theoretically
undefined, but actually O (used by malware to see if
upper part is actually reset or if wrongly emulated as
'mov ax, cs'.)

non standard CRO access

' [FAH:

OEaPrin:

4 5. = +hy
[~ | B =
I'. 1y =r- sl

e o B I B I] S BER LIE0 I B B Bl S Y roFla X170k D

smsw (undocumented) gives full crO access.
then crO access with ‘ignored' Mod/RM
then standard crO access...

same results, in all 3 cases.

bswap

rax
12 34 56 78 90 ab cd ef => ef cd ab 90 78 56 34 12

eax
.. 01 23 45 67 => 00 00 00 00 67 45 23 01

ax
.. 01 23=> 0000

Bswap... is like an administration... rules prevent it to
work correctly most of the time...

it's supposed to swap the endianness of a register.
but most of the time, it does something unexpected.

with a 64b register, it swaps the quadword around.
good.

with a 32b, it resets the highest dword. 'as usual', of
course...

and on 16b, it's 'undefined' but it just clears the 16b
register itself (the rest stays unchanged, of course)...

00400008 0000] lwle plr [cox]. ol

00400ifa 0000 2dd Eyte pty [va=] a. rrx imaneer
00400ifc 0000 2dd et ptr [TaE]. Ao rig 421e
AT e T = bt pbT [TEx]| . =L P TEEEE-CC
0040-00a 8720 wchy Sax eax réx 471700
(0040: 0090 nod —

D n - BAGY o
bbb FFE BF-19Cc2 hink nop edx

| horess voaion e rzaci-q 024222001 - v ShifsF TR 1

demo of nop / mov / bswap, in both 32b and 64b

push+ret

start:
.0B401014:
.B401016:

next :
.2040101D:

anyone knows what will happen here ?

push, ret.
put an address on the stack, pop it and jump to it.

no possible trick, right...

DEMO

ttttt T LTILY " LSS BT ALY kLt &
ArenirdF|) . 9y
L T] - E3 IEIP=BAR FLSH <pnahrer .re-tk
dbablbl]« EBIE EEIH EEl uzcd 32 a jJurp to nont
Ll L N [FH 1T
Grmgng o . 1HT =
» B2 2ZIPEBIP PLEH pa b s . B3ddlads Santamt — 'Tadatg't

Uil ol e FRLs JEIL4d CILL DWUHED B IR LS Led LI Ld) ceLr =k
[l LA | N [T [0 Cir, <
aremlier|] . FA an FIEH 0 —— . o 3
aeeplpzs|L. FFLS 1B L4B@ CRLL DWOAD FTR DS [4dliial = I\ _ncllsomces' corkametmn

al e i E . a
'.J]E:HEEF :;";:' iIHI'}} = push-sret test: "Fail"

so, what happened ?
olly even auto-comments the ret!

the 66: before the RETN makes return to IP, not EIP.
so here we returned to 1008, not 401008.

the other problem is that while different, there is no
official name for this ret to word, 'small ret’, 'ret16'....

...and so on...

* much more @ http://x86.corkami.com
 also graphs, cheat sheet...

« too much theory for now...

| won't enumerate them all.
they're already on Corkami, with some other x86 stuff
that might be useful to print.

too much theory with no practice never gives good
results...

Corkami Standard Test

so | created CoST.

CoST

 http://cost.corkami.com
 testing opcodes

 in a hardened PE
» available in easy mode

an opcode tester, in a tricky PE.
available in easy mode compile (less tricky), as CoST
is quite difficult to debug :)

just run, and it roughly displays what happened.

more than 150 tests

 classic, rare mov eax,
cmp eax,

e jumps (JMP to IP, IRET, ...) 1z

« undocumented (lceBP, SetALc...)

» cpu-specific (MOVBE, POPCNT,...)

» os-dependant, anti-VM/debugs

» exceptions triggers, interrupts, OS bugs,...

so, it contains a lot of various tests... (150 is the lower
margin, depend how you count)

some trivial... some less trivial.

CoST's internals

aa] cablpg T2 2 - T1S K|
PR L TR TN (T TL R AL FEE I
=57 l: boaw Hordond Tl EETA] TRV
ct B2 raaea: FII 200 i rizhan oz

_J [TS 1c1med I.I:.l.llulll."]_l.l.".ﬂ 1 o WL BRI |

RN LR L

: ||:..:|||_..:I.:_..:|||_..._ :

] ST PO T T g b R ||
3 I-A IH-LLLl.-.lu
H l.‘lll.'l.‘ll.lu i=

Lo T |
2 _J- |-- a M .le ozl
| EMETT r.lq.r.l.q.-.'l.-}.-\.
4 ToA- i FETE s

al3? PE _7EFDA22@ |Hiew 8.15 <{c>5EHNH
4_Main: *Starting: jumps opcodes...’
-7EFDRZ2A: ,]umps —1
-7EFDA22F:

.7EFDA238: d., [BCHFEBHBE], s"Starting: classic opcodes...’|
-7EFDBZ3nA: classics ——

Cost just gives some output when ran from the
command line.

but actually it gives much more output on debug
output.

even if the binary is hand-made, it's self documented,
via one-line calls to VEH printing, and internal
exports for different internal chapters.

S

; Ijl

Pemi_wmza —— |

(o o o o |]

. TE
. 'E
. 'E
. TE
. TE

i

F i

here is my favorite part of CoST:
anyone sees what this is doing ?

executing code at push_eip...
then the same code with selector 33 (64b code)

so the same opcodes are executed twice, first in 32b
mode, then in 64b.

-di]

mry 1

= | -L= H

= 1=:1-1
- TEAZ_EZN

- =LviEnT=

di=zas=embl

0040102a 6344 nov=xd =he. eax] WEEE Valus
0040102z 4301=0 add FAH,rax lacte
0040102f =h retf rax =aslactc
00401030 dltbtcacelea CHp ebx, JEA| | TCX 7692z620
0u401036 7515 jne imagell || ydm =3y

and these opcodes gives exclusive mnemonics to each
side...

works fine under a 64b OS.

same EIP, same opcodes, twice, and different code.

CoST vs WinDbg & Hiew

WinDbg 6.12.0002.633

*RE HLENUIN NOdUlE 103ad COnpletsed DUT SEYymbholsE CC

imagefetd0odo:

Fetdioon 44 dec =hbp

7efddddl Sa pop aed=

7eftdidd2 ce into

7efd000l Of 7

7efdiood 1333 =hh byte ptr [max]

7etd000s =9d4db010000 jnp imageTetd00004

7efd000b 04d436£5354 or =ax.54536F43h
Hiew 8.15

e
dragon: #UD
- JEFDODBe: E91501 jmp

the

as you'd expect, WinDbg, following Intel docs too
closely, will give you "?7?'

Hiew does that too a little.

but honestly, | found bugs in all disassemblers | looked
at, no exception AFAIR. Even a crash in XED.

a hardened PE

n H-lilnﬁ-t-.-q. i
[rmHL N r|
A |'if e
| || K 1- L
1] =it I|=
" Al |'|| B a7
Y K HRI— =4
sl el
Hﬁ_n..r 1]‘-HHII
tsseq T . I =t

= "~ HHE

E: = f gL
o OB || b F 1 BaPe
. T & 17414

p:
Eh=]

Top PE 'footer'

CoST was originally only an opcode tester.
then | added a few PE ftricks...

have a look yourself, the top of the file, and the PE
header (right at the bottom)

CoST vs IDA

=1
ke LY LT
¥ Peec oo M
9 iz Tur il oul ol cnce NG EC, wurlinuc?
¥ Wanin M
[]
! i drh = 2o e e
¥ Puoc i M
g WJEFLT nal waal v Ui gt D sve v e lawd ie Le o =

As you can see, IDA didn't really like it at first (fixed,
now)

So, if CoST helps you to find a few bugs in your
program, I'm not really surprised.

a bit more of PE...

but one single file, even full of tricks, is not enough to
express all the possibilities of the PE file.

so | created more.

PE on Corkami

« still in progress
* more than 120 PoCs

* covering many aspects
» good enough to break <you name it>

» 'summary' page http://pe.corkami.com
 printable graphs

| already made some useful graphs for PE files.

and | started a wiki page, with more than 120 PoCs,
focusing, as usual, on precise aspects of the PE.

PE with no section, with 64k sections, with huge
ImageBase, relocation encryption...

virtual section table vs Hiew

EEEIEEEIEEEIR

In low alignments, the section table is checked but not
used at all.
so, if it's full of zeroes, it will still work — under XP.

thus, with SizeOfOptionalHeader, you can set it in
virtual space...

Hiew doesn't like that.
check the picture, it doesn't even identify it as a PE.

Folded header

what do you think ?

when you can do ASCII art with the PE info, something
dodgy is going on ;)

this is ReversingLabs' dual PE header.
the PE header is partially overwritten (at exports
directories) on loading.

the upper part is read from disk, the lower part, read in
memory, is overwritten by the section that is folded
over the bottom of the header.

Weird export names

« exports = <anything non null>, 0

PoE1omn: BAFF

0 H
EEEXEEXEXEEEEEEEXEEEEEEEXEEEXRKEKERXE
¥ Ina=rt aubliminal me=ssag= her= x
EEEXEEEXEEEEEEENEEERNEEENEEENE KN XK
EAGA1GNA: BBFF
5 e T W N R

export names can be anything until 0, or even null.

Hiew displays them inline, so, well, here is the PoC of
weird export names

one of the other names in this PoC is LOOOONG
enough to trigger a buffer overflow >:)

65535 sections vs OllyDbg

Low memonry! [t S|

* Unable to allocate 531677134, bytes af memany

| Dan't dizplay this meszage in the future

this is a 64k section PE against the latest Olly.

amazingly, it doesn't crash despite this funny
message...

a last one...

TLS AddressOfindex is overwritten on loading

Imports are parsed until Name is 0 % TLS Aol on imports
D>uer

Microsoft Windows XP [U

under XP, overwritten after imports D>t 1s a0i0SDET exe

 imports are fully parsed
under W7, before
» truncated

same PE, loaded differently

this one is not very visual, yet quite unique.

TLS Aol points to an Import descriptor Name
member...

depending on Aol or imports happening first, this is a
terminator or not...

so the same PE gets loaded with more or less imports
depending on the OS.

Conclusion (1/2)

» x86 and PE are far from perfectly documented

official docs [FAIL

unlike what | used to believe, cpus and windows
binaries are far from perfectly logical nor
documented

If you only follow the official doc, you're bound to fail.
especially with the malware landscape out there.

Conclusion (2/2)

1.visit Corkami

2.download the PoCs
 read the doc / source
3.fix the bugs ;)
 or answer my bug reports ?#$!

so give Corkami PoCs a try — and send me a postcard
if you found some bugs

| seriously hope that MS will put WinDbg back to a
more reactive release cycle, and will update it...

Acknowledgments

» Peter Ferrie

e |vanlefOu

Adam Btaszczyk, BeatriX, Bruce Dang, Candid Wiest, Cathal Mullaney, Czerno, Daniel Reynaud, Elias
Bachaalany, Ero Carrera, Eugeny Suslikov, Georg Wicherski, Gil Dabah, Guillaume Delugré, Gunther, Igor
Skochinsky, lifak Guilfanov, lvanlefOu, Jean-Baptiste Bédrune, Jim Leonard, Jon Larimer, Joshua J. Drake,
Markus Hinderhofer, Mateusz Jurczyk, Matthieu Bonetti, Moritz Kroll, Oleh Yuschuk, Renaud Tabary, Rewolf,
Sebastian Biallas, StalkR, Yoann Guillot,...

Questions?

Eternal thanks to Peter Ferrie, my permanent reviewer.
lvanlefOu is also very helpful.

a lot of people helped me in the process to make this
presentation and the content on corkami, in one way
or another.

Any questions?

Thank YOU!

@anged77

Thanks for your attention. | hope you liked it.

Bonus

* Mips relocs (on relocs)

» ImageBase reloc

* multi-subsystem PE
* regs on TLS & DlIMain

Lt Sl
0 wmull ivermull ivy von.ese
0 wmull ivwraull ivy ol cse .
i
L |

I

)

¥ Woniey M

75

mips relocs are still working, even with x86 CPU and
PE. and relocs apply on relocs data themselves... so
does my PoC

adding an extra relocation on the imagebase doesn't
influence the loading (the PE is already mapped), but
it interferes with the EP calculation.

Drivers are just low alignment PEs with different
import. so | made a PE with low alig and no imports,
that detects how it's ran, and resolves its own
iImports accordingly

on TLS and DLLMain return, only ESI and EIP have to
be correct, so my PoC corrupts everything else... IDA
didn't like a weird ESP...

