
The Rekall Memory Forensic Framework is a collection of memory
acquisition and analysis tools implemented in Python under the GNU
General Public License. It originated in 2011 as the “Technology
Preview” branch of the Volatility® Framework, with goals of
streamlining code and improving efficiency, performance and usability.
Code differences over years of development made it difficult to
remerge the Volatility Framework with this rapidly developing branch,

so the developers deemed it necessary to
fork the project in Dec 2013 The Rekall
Framework has been included in the
development of Google Rapid Response, a
live enterprise IR/forensics triage tool.

Some of the key differences that most analysts notice with Rekall is its ease of use,
as it does not require the specification of a Windows target system profile
when invoking a plugin. Rekall uses an alternative means of deciphering
the profile of the Windows system other than reading the KDBG (Kernel
Debugging Data Block). Rekall also uses interactive analysis sessions that
cache information in memory, allowing data to remain available for increased
speed in subsequent module analysis. Rekall’s most exciting feature is its
ability to work with winpmem for LIVE system memory analysis - further
reducing the time responders must take in triaging a possibly compromised system.
rekall-forensic.com

FOR408
Windows
Forensics

GCFE

SEC504
Hacker Techniques,

Exploits, and
Incident Handling

GCIH

C O R E

I N - D E P T H I N C I D E N T R E S P O N S E
FOR508

Advanced Incident
Response

GCFA

FOR572
Advanced
Network

Forensics and
Analysis

FOR610
REM:

Malware Analysis

GREM

S P E C I A L I Z A T I O N

FOR526
Memory
Forensics
In-Depth

FOR518

Mac
Forensics

MGT535
Incident

Response
Team

Management

FOR585
Advanced

Smartphone
Forensics

S A N S D F I R C u rric u l u m

Six-Step
Investigative
Methodology
Walkthrough

In-Depth
Memory
Analysis

Identify
rogue processes1

Dump suspicious
processes and drivers6

Look for evidence of
code injection4 Check for

signs of a rootkit5
How to Parse a Memory Image with the Volatility® Framework

Live Memory Analysis with Rekall

Load the winpmem
driver from an
administrative cmdshell

Conduct Analysis
with Rekall Plugins

Launch Rekall with
access to \\.\pmem

1

3

2

Retrieve USN Journal Entries USNParser by Tom Spencer
The $USNJournal can hold trace artifacts for files/directories that USED to be present on a volume. Spencer’s plugin
carves entries from a memory image – awesome!
$ vol.py -f system_image.vmem --profile=Win7SP1x64 usnparser --output=csv --output-file=usn.csv -CS

Identify Persistence Mechanisms AutoRuns by Thomas Chopitea
Identifying persistence mechanisms implemented on a compromised system to reinstantiate a malicious process after a
reboot or process termination can be performed in a variety of ways. Using only a memory image of that system, we can
extract some of the most common persistence mechanisms used by malware today by invoking Chopitea’s autoruns plugin.
$ vol.py -f system_image.vmem --profile=Win7SP1x64 autoruns -t autoruns

Extract Network Packets ethscan by Jamaal Speights
In some investigations, the sole source of network traffic must be carved out of the system memory image. Using Speights’
plugin, we are able to extract network packets from memory, with an output option (“-C”) of creating a pcap file.
$ vol.py -f system_image.vmem --profile=Win7SP1x64 ethscan --save-pcap=out.pcap

Extract Plaintext Passwords mimikatz by Francesco Picasso
A huge thanks to Benjamin Delpy for creating the mimikatz plaintext credential harvester that acts on the lsass process to
extract usernames and passwords from interactive sessions of the target system. Picasso has given us easy access to this
functionality on memory images through his Volatility plugin.
$ vol.py -f system_image.vmem --profile=Win7SP1x64 mimikatz

Reconstruct Browser History Chrome/Mozilla by John Lassalle
Browser forensics may reveal suspicious web activity, and there are multiple tools that examiners can use to reconstruct
browser artifacts from disk. What is the gain in reconstructing browser history from memory? One case is when the
browser history is trapped in a hibernation file but has since been deleted by the user (this may even indicate intent).
Lassalle’s Chrome and Mozilla plugins grant easy access to these artifacts.
$ vol.py -f system_image.vmem --profile=Win7SP1x64 firefoxhistory --output=csv --output-file=firefox.csv

F I N D
 E V I L W H E R E I T L I E S

Essential in Effective Incident
Response Today

sans.org/FOR526

DFIR Blog
digital-forensics.sans.org/blog

DFIR Facebook
sansforensics

DFIR Google+
gplus.to/sansforensics

DFIR Mailing List
dfir.to/MAIL-LIST

DFIR Twitter
@sansforensics

Analyze process
DLLs and handles2

Review
network artifacts3

Stop being blind to the
adversary – Arm your incident
response team today!

Memory Analysis will prepare your team to:
• Discover zero-day malware
• Detect compromises
• Uncover evidence that others miss

Analysts armed with
memory analysis skills
have a better chance to detect
and stop a breach before you
become the next news headline.

rekall-forensic.com

Memory Forensics
P o ster

Malware Can Hide, But It Must Run

digital-forensics.sans.org
S P R I N G 2 0 1 5 – 3 6 t h E D I T I O N – $ 2 5 . 0 0

Process Struct (_EPROCESS)

�Pcb – Process control block

�CreateTime – Time when the process was started.

�ExitTime – Exit time of the process – process is still
stored in the process list for some time after it exits. It
allows for graceful deallocation of other process structures.

�UniqueProcessId – PID of the process

�ActiveProcessLinks – Doubly linked list to other
process’ EPROCESS structures (process list)

�ObjectTable – Pointer to the process’ handle table

�Peb – Pointer to the process environment block

�InheritedFromUniqueProcessId – The parent PID

�ThreadListHead – List of active threads (_ETHREAD)

�VadRoot – Pointer to the root of the VAD tree

System Process DTB
(directory table base)
The directory table base of a process points to the base of
the page directory table (sometimes called the page directory
base, or PDB). The CR3 register points to this location, which
is unique per process. From the DTB, the complete list of
the processes’ page tables can be discovered. Rekall locates
the DTB for the Idle process (the Idle process is really just an
accounting structure) and then uses this to find the image base
of the kernel. Then, the KDBG (if needed at all) can be found
deterministically, rather than using the scanning approach to
find the KDBG used by Volatility. From the Idle process DTB, all
other required structure offsets can be determined.

_LDR_DATA_TABLE_ENTRY
�DllBase – The base address of the DLL

�EntryPoint – Entry point of the DLL.

�SizeOfImage – Size of the DLL in memory

�FullDllName – Full path name of the DLL

�TimeDateStamp – The compile time stamp for the DLL

Process Environment Block (_PEB)
�BeingDebugged – Is a debugger attached to the process

�ImageBaseAddress – Virtual address where the executable is loaded

�Ldr – Pointer to _PEB_LDR_DATA structure

�ProcessParameters – Full path name and command-line arguments

PEB Loader Data (_PEB_LDR_DATA)
�InLoadOrderModuleList – List of loaded DLLs

�InMemoryOrderModuleList – List of loaded DLLs

�InInitializationOrderModuleList – List of loaded DLLs

Kernel Debugger Data Block
(_KDDEBUGGER_DATA64)

�PsLoadedModuleList – Pointer to the list of loaded kernel modules

�PsActiveProcessHead – Pointer to the list head of active processes

�PspCidTable – Table of processes used by the scheduler

�MmUnloadedDrivers – List of recently unloaded drivers

Unloaded Drivers
�Name – Driver name

�StartAddress –Start address where driver was loaded

�EndAddress – End address where driver was loaded

�CurrentTime – Time when driver was unloaded

This poster shows some of the structures analyzed during memory
forensic investigations. Just as those practicing disk forensics benefit
from an understanding of filesystems, memory forensic practitioners
also benefit from an understanding of OS internal structures.
The internal structures detailed in the poster are the most
important in most investigations, but by no means are they
complete. Similarly, each structure has far
more members than are shown on
the poster. Some structures have
hundreds of members. We
have again chosen to show
those that are most useful
to our investigations.

_MMVAD
�LeftChild – Pointer to the left VAD child

�RightChild – Pointer to the right VAD child

�StartingVpn – Starting address described by VAD

�EndingVpn – Ending address described by VAD

�VadsProcess – Pointer to the _EPROCESS block
that owns this VAD

Unloaded
Modules

The Windows OS keeps track

of recently unloaded kernel

modules (device drivers). This is

useful for finding rootkits (and

misbehaving legitimate

device drivers).

VAD
VADs (Virtual Address

Descriptors) are used by the

memory manager to track ALL memory

allocated on the system. Malware and

rootkits can hide from a lot of different

OS components, but hiding from the

memory manager is unwise.

If it can’t see your memory,

it will give it away!

_EPROCESS
The _EPROCESS is perhaps the most

important structure in memory forensics. As

opposed to the KDBG (used only by Volatility), it is also

used by Rekall. The _EPROCESS structure has more than

100 members, many of them pointers to other structures.

The _EPROCESS gives us the PID and parent PID of a given process.

Analyzing PID relationships between processes can reveal malware. For

more information, see the SANS DFIR poster “Know Normal, Find Evil.”

The _EPROCESS block also contains the creation and exit time of a

process. Why would the OS keep track of exited processes? The answer

is that when a process exits, it may have open handles which must be

closed by the OS. The OS also needs time to gracefully deallocate

other structures used by the process. The ExitTime field allows us

to see that a process has exited but has not yet been completely

removed by the OS. Note that the task manager and other

live response tools will not show exited processes

at all, but they are easy to see with the

use of memory forensics!

Process
Environment Block

The PEB contains pointers to the

_PEB_LDR_DATA structure (discussed

below). It also contains a flag that tells whether

a debugger is attached to a process. Some

malware will debug a child process as an anti-

reversing measure. Finally, the PEB also contains

a pointer to the command line arguments that

were supplied to the process on creation.

Plugins: modules, ldrmodules,
dlllist, pstree –v

PsLoadedModuleList
The PsLoadedModuleList structure of the

KDBG points to the list of loaded kernel modules

(device drivers) in memory. Many malware variants use

kernel modules because they require low level access to the

system. Rootkits, packet sniffers, and many keyloggers use

may be found in the loaded modules list. The members of the

list are _LDR_DATA_TABLE_ENTRY structures. Stuxnet,

Duqu, Regin, R2D2, Flame, etc. have all used some kernel

mode module component – so this is a great place to look

for advanced (supposed) nation-state malware.

However, note that some malware has the ability

to unlink itself from this list, so scanning for

structures may also be necessary.

_LDR_DATA_TABLE_ENTRY

This structure is used to describe a

loaded module. Loaded modules come in

two forms. The first is the kernel module

(aka device driver). The second type of

loaded module are dynamic link libraries

(DLLs), which are loaded into user

mode processes.

PLUGINS: modules, ldrmodules,
dlllist

PEB Loader Data
This structure contains pointers to

three linked lists of loaded modules in a

given process. Each is ordered differently

(order of loading, order of initialization, and

order of memory addresses). Sometimes

malware will inject a DLL into a legitimate

Windows service and then try to hide. But

they’d better hide from all three lists or

you’ll detect it with no trouble.

Plugins: ldrmodules

ObjectTable
For a process in Windows to use

any resource (registry key, file, directory,

process, etc.) it must have a handle to that

object. We can tell a lot about a process

just by looking at its open handles. For

instance, you could potentially infer the log

file a keylogger is using or persistence

keys used by the malware, all by

examining handles.

ThreadListHead
Where are the thread list structures on

the poster? Sorry, we just don’t have room to

do them justice. But most investigations don’t

require us to dive into thread structures directly.

Threads are still important though. In Windows, a

process is best thought of as an accounting structure.

The Windows scheduler never deals with processes

directly, rather it schedules individual threads

(inside a process) for execution. Still, you’ll

find yourself using process structures

more in your investigations.

Alissa Torres
@sibertor

Jake Williams
@malwarejake

Memory analysis is now a crucial skill for any incident
responder who is analyzing intrusions. The malware paradox
is key to understanding that while intruders are becoming

more advanced with anti-forensic tactics and techniques, it is
impossible to hide their footprints completely from a skilled

incident responder performing memory analysis.

Learn more about FOR526: Memory Forensics In-Depth
at sans.org/FOR526

FOR526
Memory Forensics

In-Depth
AUTHORS:

DFIR Resources
digital-forensics.sans.org

DFIR Blog
digital-forensics.sans.org/blog

DFIR Facebook
sansforensics

DFIR Google+
gplus.to/sansforensics

DFIR Mailing List
dfir.to/MAIL-LIST

DFIR Twitter
@sansforensics

M A LWA R E C A N H I D E , B U T I T M U S T R U N

Note that many internal OS structures are doubly linked lists. The pointers in the lists actually point to the pointer in the next
structure. However, for clarity of illustration, we have chosen to show the type of structure they point to. Also, note that the
PsActiveProcessHead member of the KDBG structure points to ActiveProcessLinks member of the _EPROCESS structure. However, for
clarity we depict the pointer pointing to the base of the _EPROCESS structure. We feel that this depiction more clearly illustrates
the relationship between the various structures.

