

x86 & PE

Ange Albertini
28th December 2011

before you decide to read further...

Contents of this slide deck:

1. Introduction

1. introduce Corkami, my reverse engineering site
2. explain (in easy terms)

1. why correct disassembly is important for analysis
2. why undocumented opcodes are a dead end

2. Main part

1. a few examples of undocumented opcodes and CPU weirdness
2. theory-only sucks, so I created CoST for practicing and testing.
3. CoST also tests PE, but it's not enough by itself
4. So I documented PE separately, and give some examples.

HIDDEN SLIDE

Improved, but similar

Author
● Corkami

● reverse engineering
● technical, really free
● MANY handmade and focused PoCs

– nightly builds
– summary wiki pages

● but... only a hobby!

“there's a PoC for that”
and if there's none yet, there will be soon ;)

http://www.corkami.com/
file:///D:/_nc10/sources/corkami/trunk/builds/

the story behind this presentation

CORKAMI

x86 PE

PDF,JAVA,...

CORKAMI

PDF,JAVA,...

THIS TALK

x86 PE

“Achievement unlocked”

(Authors notified, and most bugs already fixed)

Agenda

I. why does it matter?
I. assembly
II. undocumented assembly

II.x86 oddities
(technical stuff starts now)

III.CoST
IV.a bit more of PE

assembly, in 8 slides

from C to binary

inside the binary

order

1
2

3

our code, 'translated'

opcodes ⇔ assembly

what's (only) in the binary

execution ⇔ CPU + opcodes

opcodes
● generated by compilers, tools,...

● or written by hand
● executed directly by the CPU
● the only code information, in a standard binary

● what 'we' read
– after disassembly

● disassembly is only for humans
● no text code in the final binary

let's mess a bit now...

let's insert 'something'

what did we do?
● Inserting an unrecognized byte

● directly in the binary
– to be executed by the CPU

● not even documented, nor identified!

“kids, don't try this at home!”

the CPU doesn't care

● it knows
● and does its own stuff

what happened ?
● D6 = S[ET]ALC

● Set AL on Carry
– AL = CF ? -1 : 0

● trivial
● but not documented

● unreliable, or shameful ?

“do what I do...”

the problem (1/2)
● the CPU does its stuff

● whatever we (don't) know
● if we/our tools don't know what's next, we're blind.

the problem (2/2)

no exhaustive or clean test set
● deep into malwares or packers
● scattered

→ Corkami

let's start exploring x86...

Questions

Generalities
● opcodes
● registers

● relation
● initial values

Specificities

a multi-generation CPU: modern...

English
let's go!
you win
sandwich
hello
f*ck

Assembly
push
mov
call
retn
jmp

...shakespeare...

thou
porpentine
enmity
hither
unkennel

aaa
xlat
verr
smsw
lsl

(old, but fully supported)

'over-disassembling'
● CD XX: int XX
● deprecated behaviors:

● int 20h = VXD, int 35-39 = FPU

...next generation

tweet
poke
google
pwn
apps

crc32
aesenc
pcmpistrm
vfmsubadd132ps
movbe

Fused Multiply-Alternating Subtract/Add
of Packed Single-Precision Floating-Point Values

only in netbooks!

all opcodes PoC

registers
● Complex relations

● FPU changes FST, STx, Mmx (ST0 overlaps MM7)
– also changes CR0 (under XP)

● Initial values
● AX = <OS generation>

– OS = (EAX == 0) ? XP : newer
● GS = <number of bits>

bits = (GS == 0) ? 32 : 64

initial values PoC
XP W7

Flags
TLS

eax
ecx
edx
ebx

EntryPoint
eax
ecx
edx fully ctrl-ed

controlled
fixed
range

smsw

● CR0 access, from user-mode
● 286 opcode

● higher word of reg32 'undefined'
● under XP

● influenced by FPU
● eventually reverts

DEMO

GS
● unused on Windows 32b

● on 64b: FS, GS = TEB32, TEB64
● reset on thread switch

● eventually reset
– debugger stepping
– wait
– timings

DEMO

nop

● nop is xchg *ax, *ax
● but xchg *ax, *ax can do something, in 64b !

87 c0: xchg eax, eax
.. 01 23 45 67 => 00 00 00 00 01 23 45 67

● hint nop 0F1E84C090909090 nop dword ptr [eax+eax*8-0x6f6f6f70], eax
● partially undocumented, actually 0f 18-1f
● can trigger exception

mov

● documented, but sometimes tricky
● mov [cr0], eax mov cr0, eax

– mod/RM is ignored
● movsxd eax, ecx mov eax, ecx

– no REX prefix
● mov eax, cs movzx eax,cs

– 'undefined' upper word

non standard CR0 access

bswap

rax
12 34 56 78 90 ab cd ef => ef cd ab 90 78 56 34 12

eax
.. 01 23 45 67 => 00 00 00 00 67 45 23 01

ax
.. 01 23 => 00 00

DEMODEMO

push+ret

DEMO

...and so on...
● much more @ http://x86.corkami.com

● also graphs, cheat sheet...

● too much theory for now...

http://x86.corkami.com/
file:///D:/_nc10/sources/corkami/trunk/builds/

Corkami Standard Test

CoST
● http://cost.corkami.com
● testing opcodes
● in a hardened PE

● available in easy mode

http://cost.corkami.com/
file:///D:/_nc10/sources/corkami/trunk/builds/

more than 150 tests
● classic, rare
● jumps (JMP to IP, IRET, …)
● undocumented (IceBP, SetALc...)
● cpu-specific (MOVBE, POPCNT,...)
● os-dependant, anti-VM/debugs
● exceptions triggers, interrupts, OS bugs,...
● ...

CoST's internals

32+64 = ...

DEMODEMO

CoST vs WinDbg & Hiew
WinDbg 6.12.0002.633

Hiew 8.15

a hardened PE

Top PE 'footer'

CoST vs IDA

a bit more of PE...

PE on Corkami
● still in progress
● more than 120 PoCs

● covering many aspects
● good enough to break <you name it>

● 'summary' page http://pe.corkami.com
● printable graphs

http://pe.corkami.com/
file:///D:/_nc10/sources/corkami/trunk/builds/

virtual section table vs Hiew

Folded header

Weird export names
● exports = <anything non null>, 0

65535 sections vs OllyDbg

a last one...
● TLS AddressOfIndex is overwritten on loading
● Imports are parsed until Name is 0

● under XP, overwritten after imports
● imports are fully parsed

● under W7, before
● truncated

same PE, loaded differently

Conclusion (1/2)
● x86 and PE are far from perfectly documented

official docs ⇒ FAIL

Conclusion (2/2)

1.visit Corkami
2.download the PoCs

● read the doc / source
3.fix the bugs ;)

● or answer my bug reports ?#$!

Acknowledgments
● Peter Ferrie
● Ivanlef0u

Adam Błaszczyk, BeatriX, Bruce Dang, Candid Wüest, Cathal Mullaney, Czerno, Daniel Reynaud, Elias
Bachaalany, Ero Carrera, Eugeny Suslikov, Georg Wicherski, Gil Dabah, Guillaume Delugré, Gunther, Igor
Skochinsky, Ilfak Guilfanov, Ivanlef0u, Jean-Baptiste Bédrune, Jim Leonard, Jon Larimer, Joshua J. Drake,
Markus Hinderhofer, Mateusz Jurczyk, Matthieu Bonetti, Moritz Kroll, Oleh Yuschuk, Renaud Tabary, Rewolf,
Sebastian Biallas, StalkR, Yoann Guillot,...

Questions?

 74

Thank YOU!
@ange4771@ange4771

http://twitter.com/ange4771
file:///D:/_nc10/sources/corkami/trunk/builds/

 75

Bonus
● Mips relocs (on relocs)
● ImageBase reloc
● multi-subsystem PE
● regs on TLS & DllMain

x86 & PE

Ange Albertini
28th December 2011

Welcome!

I'm Ange Albertini, and I will talk about x86 and PE

before you decide to read further...

Contents of this slide deck:

1. Introduction
1. introduce Corkami, my reverse engineering site
2. explain (in easy terms)

1. why correct disassembly is important for analysis
2. why undocumented opcodes are a dead end

2. Main part

1. a few examples of undocumented opcodes and CPU weirdness
2. theory-only sucks, so I created CoST for practicing and testing.
3. CoST also tests PE, but it's not enough by itself
4. So I documented PE separately, and give some examples.

HIDDEN SLIDE

this extra slide to let you decide if you really want to
read further ;)

1.I studied ASM and PE, from scratch
2.I failed all tools I tried: IDA, OllyDbg, Hiew, pefile,

WinDbg, HT, CFF Explorer...
3.here are a few of my findings

Improved, but similar

This is an improved version of my presentation at
Hashdays.

I reworked it, but most of the content is still the same.

Author
● Corkami

● reverse engineering
● technical, really free
● MANY handmade and focused PoCs

– nightly builds
– summary wiki pages

● but... only a hobby!

“there's a PoC for that”
and if there's none yet, there will be soon ;)

I created Corkami, a website about reverse engineering.

it's technical, and free: open-source, relying on free tools,
free for commercial use, no ads, no log-in.

I focus on creating a LOT of small focused PoCs. they're
handmade so really no extra stuff. each of them is probably
meaningless, but altogether, they're a useful toolbox to test
and learn.

then I write a summary page. but I put more work in PoCs
than in the pages.

the important is: for each feature I study, there's a PoC
available

but it's only a hobby, so it's quite messy, and not as good as
I'd like it to be.

so, whether it's
●a non PE exe with an inverted ZM signature, in 16bits

asm.
●a complete 'correct' PDF with text (that's the full PDF

btw), typed in notepad
●a working java class, with opcodes generated

manually
●a tiny PE, with imports and code in the middle of the

header

you can see that all of them only have the necessary
elements.

the story behind this presentation

and here is the story behind this presentation

first, a small flashback

years ago, I was young and innocent, believing that
CPU would be perfect, because they're made of
transistor, not software.

and I thought I knew assembly.

then I encountered my first undocumented opcodes.
and shortly after, my first sectionless PE.

I was shocked, but I thought I was still young...

So I decided to go back to the basics, studying x86
and PE from scratch.

CORKAMI

x86 PE

PDF,JAVA,...

and writing my findings on the way, on Corkami.

CORKAMI

PDF,JAVA,...

THIS TALK

x86 PE

This talk is only a subset of what's available on the
site, even on these topics.

“Achievement unlocked”

(Authors notified, and most bugs already fixed)

but, if I was just a guy learning ASM and PE, I probably
wouldn't be presenting here.

So, here is why I'm here :)

Most of these bugs were already reported and fixed.

Agenda

I. why does it matter?
I. assembly
II. undocumented assembly

II.x86 oddities
(technical stuff starts now)

III.CoST
IV.a bit more of PE

so, first, I'll start slowly, trying to introduce assembly to
beginners, and make them understand the problem
of undocumented opcodes.

then, it will get more technical:
I'll cover a few assembly tricks, including some found

in malware.

then I'll introduce my opcode tester, CoST.

and I'll also present my last project which deals with
the PE format.

assembly, in 8 slides

So, let's start and try to make everybody understand
the problem of undocumented opcodes.

so first, introduce opcodes themselves

from C to binary

so, we create a simple program in a language, such as
C.

Here, in Visual Studio, Microsoft standard development
environment.

this program shows a simple message box on screen,
then terminates.

an executable is generated, and indeed does what we
expected.

inside the binary

what the Visual Studio compiler did from our C code is
actually generate sequences of assembly code
instruction that will generate the wanted actions.

order

1
2

3

so, the C code is turned into assembly. which is itself
encoded in the binary as opcodes.

Here, you can see calls to MessageBox, then
ExitProcess (the names are self-explaining), with the
parameters above.

these assembly operations are stored in opcodes
directly in the binary, as visible on the left.

our code, 'translated'

opcodes ⇔ assembly

now you know that this is what is in the file itself.
this is how it's read by 'us' (reverse engineers,

malware analysts, exploit developers...).

the CPU itself only reads the hex.

as you can see, there is a relation:
68 - in hex - is used to push offsets
calls starts with FF 15...
and you can see the used addresses here (read them

backward).

so, you see the first byte determine the actual opcode.
and depending on each opcode, the length is variable.

what's (only) in the binary

This is what is actually in the file on the hard disk (the
'hex').

If you'd accidentally open the file in, say notepad - it
doesn't really make sense, but at least you have that
on your machine - you could find it here (remember,
it's hex).

Note that it's actually a very tiny part of the whole file
(<30bytes out of 56000).

execution ⇔ CPU + opcodes

What's important is that in the end, anything running on
your machine is about the CPU executing opcode,
no matter what.

the compiled file is full of 'unneeded' stuff. while you
can make a much smaller file with exactly the same
functionality (that's the whole file), and even though
they're very different, the same opcodes are present
again.

opcodes
● generated by compilers, tools,...

● or written by hand
● executed directly by the CPU
● the only code information, in a standard binary

● what 'we' read
– after disassembly

● disassembly is only for humans
● no text code in the final binary

so, the compiler translates our C to a series of
assembly operations, which is itself encoded in
opcodes.

the resulting executable only contains the opcodes,
which are directly understood and executed by the
CPU. If no error happens, what is here directly
affects the behavior of the program, there is no 'man
in the middle' from the OS.

so our C code will just eventually lead the CPU to read
and execute

6A 40 68 F4 20 40 00 68 FC 20...

if, by any chance, there is some opcodes that we are
not aware of, or doesn't do what we expect, the CPU
doesn't care, it just knows what to do.

let's mess a bit now...

so now, let's interfere with the compiling process

let's insert 'something'

let's add a command that will force a specific byte in
the opcodes.

this result is not known to visual studio, which only
shows ??

indeed, if we check Intel official documentation, there
is nothing to see here...

what did we do?
● Inserting an unrecognized byte

● directly in the binary
– to be executed by the CPU

● not even documented, nor identified!

“kids, don't try this at home!”

so, we forced something that is not recognized by the
most expensive Microsoft compiler to execute, which
is not even in Intel's books.

We should only expect a crash, right ?

the CPU doesn't care
● it knows

● and does its own stuff

but the CPU doesn't care about what YOU (or VS) know, and it just
executes that mysterious D6 just fine (apparently)

it doesn't look like a big problem, but if like Microsoft, you base your
judgment on Intel's documentation, you just don't know what
happens next. No automated analysis, proactive detection, etc...
and you need to understand that undocumented opcode.

You can't even skip it:
you don't know if it will jump, do nothing, trigger an exception...
and because of variable instruction length, you can't even tell what

would be the next instruction, so you can't guess easily backward
from the next instruction.

what happened ?
● D6 = S[ET]ALC

● Set AL on Carry
– AL = CF ? -1 : 0

● trivial
● but not documented

● unreliable, or shameful ?

so what did we do in reality ?

D6 will be decoded as SETALC, which is quite simple.

It doesn't interfere with the execution of this example (it
could have, of course).

surprisingly, it's not documented by Intel, but it's
documented by AMD.

anyone knows why ?
I'd be curious to know.

“do what I do...”

the funny thing is, even though Intel docs are full of
holes, Intel free tools are fully aware of what to
expect...

Sadly, Microsoft WinDbg decided to follow the official
docs, which makes it a very bad tool against
malware, which commonly use undocumented tricks.

the problem (1/2)
● the CPU does its stuff

● whatever we (don't) know
● if we/our tools don't know what's next, we're blind.

So, you now know that the CPU knows things that the
Intel documentations omits.

if we or our tools are not able to tell what the CPU will
do, we're just blind.

the problem (2/2)

no exhaustive or clean test set
● deep into malwares or packers
● scattered

→ Corkami

the extra problem is that each of this oddities are
usually scattered in various files, deep under
obfuscations or in malicious behavior. no 'ready to
use' toolbox.

that's the hole I wanted to fill.

let's start exploring x86...

Now, let's start the real stuff

Questions

Generalities
● opcodes
● registers

● relation
● initial values

Specificities

before focusing on particular opcodes,
my first questions was:
what are actually all the supported opcodes ?
then, actually how many registers are there ?
before anything happen, do they have any particular

value ?

a multi-generation CPU: modern...

English
let's go!
you win
sandwich
hello
f*ck

Assembly
push
mov
call
retn
jmp

that's the problem.
like English language, assembly uses mainly always

the same 'standard' opcodes.

which means, what everybody is used to hear or read:

Here, 'standard language'. What all generations
understand.

most people would understand...

...shakespeare...

thou
porpentine
enmity
hither
unkennel

aaa
xlat
verr
smsw
lsl

but Intel CPU are from the 70's and still backward
compatible...

here is an example of Shakespeare English and old
x86 mnemonics

unknown to most people.
yet still fully working on a modern CPU.

(old, but fully supported)

so here is a small executable where I only use
uncommon opcodes. some are not really doing
anything, some are actually doing something
meaningful.

I expect that most of us are not even used to see these
opcodes, yet they're fully supported by all CPUs.

'over-disassembling'
● CD XX: int XX
● deprecated behaviors:

● int 20h = VXD, int 35-39 = FPU

Another funny fact is that some specific opcodes
(interrupt) used to be for various functionality, which
made IDA and Hiew over-interpret them.

in IDA, you can disable the option which is by default.

...next generation

tweet
poke
google
pwn
apps

crc32
aesenc
pcmpistrm
vfmsubadd132ps
movbe

Fused Multiply-Alternating Subtract/Add
of Packed Single-Precision Floating-Point Values

only in netbooks!

new generation : English and opcodes.

probably unknown to most people

single opcodes for CRC, AES, string masking...

MOVBE = rejected offspring
netbook only. absent from i7
=> so much for backward compatibility

all opcodes PoC

I made a 'non working' PoC with all opcodes encoded,
and various tricky situation.

very useful to quickly test the abilities of a
disassembler.

registers
● Complex relations

● FPU changes FST, STx, Mmx (ST0 overlaps MM7)
– also changes CR0 (under XP)

● Initial values
● AX = <OS generation>

– OS = (EAX == 0) ? XP : newer
● GS = <number of bits>

bits = (GS == 0) ? 32 : 64

the basics of assembly are the registers...

registers are overlapping.
unlike many documentations, ST0 <> MM7

before any operation, registers have the value
assigned to themselves by the OS.

I collected these values
under windows, specific values it's not CPU specific,

but the initial values of the register on process start-
up, under windows, gives a few hint that are used by
malwares.

eax can immediately tell if you're on an older OS or
not.

While GS can tell you if the machine is 64b or not,
even in a 32b process.

initial values PoC
XP W7

Flags
TLS

eax
ecx
edx
ebx

EntryPoint
eax
ecx
edx fully ctrl-ed

controlled
fixed
range

I created a PoC that just gets all registers from EP and
TLS, and checks the validity of result.

easy check see if a malware/tool is interfering with the
loading process.

smsw
● CR0 access, from user-mode

● 286 opcode
● higher word of reg32 'undefined'
● under XP

● influenced by FPU
● eventually reverts

smsw is an old 286-era mnemonic (before protected
mode was 'complete'): it allows usermode access to
cr0.

the higher word of a reg32 target is 'undefined', yet
always modified (and same as cr0)

under XP, right after an FPU operation, the returned
value is modified [bits 1 and 3, called MP (Monitor
Coprocessor) and TS (Task switched)], but
eventually reverted after some time.

too tricky ? redirection fails. any idea why ?

DEMO

demo of smsw:
●undocumented behavior
●fpu relation (xp)
●redirection weirdness

GS
● unused on Windows 32b

● on 64b: FS, GS = TEB32, TEB64
● reset on thread switch

● eventually reset
– debugger stepping
– wait
– timings

the GS trick is similar.
●on 32b of windows, GS is reset on thread switch.
●on 64b windows, it's already used by the OS (value

non null at start)

ie wait long enough, it's null, whatever the value
before.

if you just step manually, instantly lost.
after some time, but not a too short time, it's reset

DEMO

demo of all GS features

nop
● nop is xchg *ax, *ax

● but xchg *ax, *ax can do something, in 64b !
87 c0: xchg eax, eax

.. 01 23 45 67 => 00 00 00 00 01 23 45 67
● hint nop 0F1E84C090909090 nop dword ptr [eax+eax*8-0x6f6f6f70], eax

● partially undocumented, actually 0f 18-1f
● can trigger exception

xchg eax, eax is 90, which originally did nothing.
(xchg eax, ecx is 91)
thus 90 became nop
but 87 c0 is an xchg eax, eax that is not a nop and

does something in 64b, as it resets the upper dword.

hint nop gives hint of what to access next. it does
nothing, but it's multi-byte.

first, it's not completely documented by intel
and, being a multi-byte opcode, if it overlaps an invalid

page, it can trigger an exception!

mov
● documented, but sometimes tricky

● mov [cr0], eax mov cr0, eax
– mod/RM is ignored

● movsxd eax, ecx mov eax, ecx
– no REX prefix

● mov eax, cs movzx eax,cs
– 'undefined' upper word

Mov is documented, but has a few quirks.
* to/from control and debug registers, memory

operands are not allowed. but not rejected !
* in 64b, with no REX prefix, movsxd can actually work

to and from a 32b register, which is against the logic
of 'sign extending'

* on the contrary, mov from a selector actually affects a
complete 32b register. the upper word is theoretically
undefined, but actually 0 (used by malware to see if
upper part is actually reset or if wrongly emulated as
'mov ax, cs'.)

non standard CR0 access

smsw (undocumented) gives full cr0 access.
then cr0 access with 'ignored' Mod/RM
then standard cr0 access...

same results, in all 3 cases.

bswap

rax
12 34 56 78 90 ab cd ef => ef cd ab 90 78 56 34 12

eax
.. 01 23 45 67 => 00 00 00 00 67 45 23 01

ax
.. 01 23 => 00 00

Bswap... is like an administration... rules prevent it to
work correctly most of the time...

it's supposed to swap the endianness of a register.

but most of the time, it does something unexpected.

with a 64b register, it swaps the quadword around.
good.

with a 32b, it resets the highest dword. 'as usual', of
course...

and on 16b, it's 'undefined' but it just clears the 16b
register itself (the rest stays unchanged, of course)...

DEMODEMO
demo of nop / mov / bswap, in both 32b and 64b

push+ret

anyone knows what will happen here ?

push, ret.
put an address on the stack, pop it and jump to it.

no possible trick, right...

DEMO

so, what happened ?
olly even auto-comments the ret!

the 66: before the RETN makes return to IP, not EIP.

so here we returned to 1008, not 401008.

the other problem is that while different, there is no
official name for this ret to word, 'small ret', 'ret16'....

...and so on...
● much more @ http://x86.corkami.com

● also graphs, cheat sheet...

● too much theory for now...

I won't enumerate them all.
they're already on Corkami, with some other x86 stuff

that might be useful to print.

too much theory with no practice never gives good
results...

Corkami Standard Test

so I created CoST.

CoST
● http://cost.corkami.com
● testing opcodes
● in a hardened PE

● available in easy mode

an opcode tester, in a tricky PE.
available in easy mode compile (less tricky), as CoST

is quite difficult to debug :)

just run, and it roughly displays what happened.

more than 150 tests
● classic, rare
● jumps (JMP to IP, IRET, …)
● undocumented (IceBP, SetALc...)
● cpu-specific (MOVBE, POPCNT,...)
● os-dependant, anti-VM/debugs
● exceptions triggers, interrupts, OS bugs,...
● ...

so, it contains a lot of various tests... (150 is the lower
margin, depend how you count)

some trivial... some less trivial.

CoST's internals

Cost just gives some output when ran from the
command line.

but actually it gives much more output on debug
output.

even if the binary is hand-made, it's self documented,
via one-line calls to VEH printing, and internal
exports for different internal chapters.

32+64 = ...

here is my favorite part of CoST:

anyone sees what this is doing ?

executing code at push_eip...
then the same code with selector 33 (64b code)

so the same opcodes are executed twice, first in 32b
mode, then in 64b.

DEMODEMO
and these opcodes gives exclusive mnemonics to each

side...

works fine under a 64b OS.

same EIP, same opcodes, twice, and different code.

CoST vs WinDbg & Hiew
WinDbg 6.12.0002.633

Hiew 8.15

as you'd expect, WinDbg, following Intel docs too
closely, will give you '??'

Hiew does that too a little.

but honestly, I found bugs in all disassemblers I looked
at, no exception AFAIR. Even a crash in XED.

a hardened PE

Top PE 'footer'

CoST was originally only an opcode tester.

then I added a few PE tricks...

have a look yourself, the top of the file, and the PE
header (right at the bottom)

CoST vs IDA

As you can see, IDA didn't really like it at first (fixed,
now)

So, if CoST helps you to find a few bugs in your
program, I'm not really surprised.

a bit more of PE...

but one single file, even full of tricks, is not enough to
express all the possibilities of the PE file.

so I created more.

PE on Corkami
● still in progress
● more than 120 PoCs

● covering many aspects
● good enough to break <you name it>

● 'summary' page http://pe.corkami.com
● printable graphs

I already made some useful graphs for PE files.

and I started a wiki page, with more than 120 PoCs,
focusing, as usual, on precise aspects of the PE.

PE with no section, with 64k sections, with huge
ImageBase, relocation encryption...

virtual section table vs Hiew

in low alignments, the section table is checked but not
used at all.

so, if it's full of zeroes, it will still work – under XP.

thus, with SizeOfOptionalHeader, you can set it in
virtual space...

Hiew doesn't like that.
check the picture, it doesn't even identify it as a PE.

Folded header

what do you think ?

when you can do ASCII art with the PE info, something
dodgy is going on :)

this is ReversingLabs' dual PE header.
the PE header is partially overwritten (at exports

directories) on loading.

the upper part is read from disk, the lower part, read in
memory, is overwritten by the section that is folded
over the bottom of the header.

Weird export names
● exports = <anything non null>, 0

export names can be anything until 0, or even null.

Hiew displays them inline, so, well, here is the PoC of
weird export names

one of the other names in this PoC is LOOOONG
enough to trigger a buffer overflow >:)

65535 sections vs OllyDbg

this is a 64k section PE against the latest Olly.

amazingly, it doesn't crash despite this funny
message...

a last one...
● TLS AddressOfIndex is overwritten on loading
● Imports are parsed until Name is 0

● under XP, overwritten after imports
● imports are fully parsed

● under W7, before
● truncated

same PE, loaded differently

this one is not very visual, yet quite unique.

TLS AoI points to an Import descriptor Name
member...

depending on AoI or imports happening first, this is a
terminator or not...

so the same PE gets loaded with more or less imports
depending on the OS.

Conclusion (1/2)
● x86 and PE are far from perfectly documented

official docs ⇒ FAIL

unlike what I used to believe, cpus and windows
binaries are far from perfectly logical nor
documented

If you only follow the official doc, you're bound to fail.
especially with the malware landscape out there.

Conclusion (2/2)

1.visit Corkami
2.download the PoCs

● read the doc / source
3.fix the bugs ;)

● or answer my bug reports ?#$!

so give Corkami PoCs a try – and send me a postcard
if you found some bugs

I seriously hope that MS will put WinDbg back to a
more reactive release cycle, and will update it...

Acknowledgments
● Peter Ferrie
● Ivanlef0u

Adam Błaszczyk, BeatriX, Bruce Dang, Candid Wüest, Cathal Mullaney, Czerno, Daniel Reynaud, Elias
Bachaalany, Ero Carrera, Eugeny Suslikov, Georg Wicherski, Gil Dabah, Guillaume Delugré, Gunther, Igor
Skochinsky, Ilfak Guilfanov, Ivanlef0u, Jean-Baptiste Bédrune, Jim Leonard, Jon Larimer, Joshua J. Drake,
Markus Hinderhofer, Mateusz Jurczyk, Matthieu Bonetti, Moritz Kroll, Oleh Yuschuk, Renaud Tabary, Rewolf,
Sebastian Biallas, StalkR, Yoann Guillot,...

Questions?

Eternal thanks to Peter Ferrie, my permanent reviewer.
Ivanlef0u is also very helpful.

a lot of people helped me in the process to make this
presentation and the content on corkami, in one way
or another.

Any questions?

 74

Thank YOU!
@ange4771@ange4771

Thanks for your attention. I hope you liked it.

 75

Bonus
● Mips relocs (on relocs)
● ImageBase reloc
● multi-subsystem PE
● regs on TLS & DllMain

mips relocs are still working, even with x86 CPU and
PE. and relocs apply on relocs data themselves... so
does my PoC

adding an extra relocation on the imagebase doesn't
influence the loading (the PE is already mapped), but
it interferes with the EP calculation.

Drivers are just low alignment PEs with different
import. so I made a PE with low alig and no imports,
that detects how it's ran, and resolves its own
imports accordingly

on TLS and DLLMain return, only ESI and EIP have to
be correct, so my PoC corrupts everything else... IDA
didn't like a weird ESP...

